“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation



Accurately predicting isotopic discrimination is central to estimating assimilated diets of wild animals when using stable isotopes. Current mixing models assume that the stable N isotope ratio (δ 15 N) discrimination (∆ 15 N) for each food in a mixed diet is constant and independent of other foods being consumed. Thus, the discrimination value for the mixed diet is the combined, weighted average for each food when consumed as the sole diet. However, if protein quality is a major determinant of ∆ 15 N, discrimination values for mixed diets may be higher or lower than the weighted average and will reflect the protein quality of the entire diet and not that of the individual foods. This potential difference occurs because the protein quality of a mixed diet depends on whether, and to what extent, the profiles and amounts of essential amino acids in the individual foods are complementary or non-complementary to each other in meeting the animal’s requirement. We tested these ideas by determining the ∆ 15 N of several common foods (corn, wheat, alfalfa, soybean, and fish meal) with known amino acid profiles when fed singly and in combination to laboratory rats. Discrimination values for the mixed diets often differed from the weighted averages for the individual foods and depended on the degree of complementation. ∆ 15 N for mixed diets ranged from 1.1‰ lower than the weighted average for foods with complementary amino acid profiles to 0.4‰ higher for foods with non-complementary amino acid profiles. These differences led to underestimates as high as 44% and overestimates as high as 36% of the relative proportions of fish meal and soybean meal N, respectively, in the assimilated mixed diets. We conclude that using isotopes to estimate assimilated diets is more complex than often appreciated and will require developing more biologically based, time-sensitive models.



OecologiaSpringer Journals

Published: Mar 1, 2010

DOI: 10.1007/s00442-009-1485-8

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.