“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Soil aggregates control N cycling efficiency in long-term conventional and alternative cropping systems



This paper presents novel data illustrating how soil aggregates control nitrogen (N) dynamics within conventional and alternative Mediterranean cropping systems. An experiment with 15 N-labeled cover crop residue and synthetic fertilizer was conducted in long-term (11 years) maize–tomato rotations: conventional (synthetic N only), low-input (reduced synthetic and cover crop-N), and organic (composted manure- and cover crop-N). Soil and nitrous oxide (N 2 O) samples were collected throughout the maize growing season. Soil samples were separated into three aggregate size classes. We observed a trend of shorter mean residence times in the silt-and-clay fraction than macro- (>250 μm) and microaggregate fractions (53–250 μm). The majority of synthetic fertilizer-derived 15 N in the conventional system was associated with the silt-and-clay fraction (<53 μm), which showed shorter mean residence times (2.6 months) than cover crop-derived 15 N in the silt-and-clay fractions in the low-input (14.5 months) and organic systems (18.3 months). This, combined with greater N 2 O fluxes and low fertilizer-N recoveries in both the soil and the crop, suggest that rapid aggregate-N turnover induced greater N losses and reduced the retention of synthetic fertilizer-N in the conventional system. The organic system, which received 11 years of organic amendments, sequestered soil organic carbon (SOC) and soil N, whereas the conventional and low-input systems merely maintained SOC and soil N levels. Nevertheless, the low-input system showed the highest yield per unit of N applied. Our data suggests that the alternating application of cover crop-N and synthetic fertilizer-N in the low-input system accelerates aggregate-N turnover in comparison to the organic system, thereby, leading to tradeoffs among N loss, benefits of organic amendments to SOC and soil N sequestration, and N availability for plant uptake.



Nutrient Cycling in AgroecosystemsSpringer Journals

Published: Sep 1, 2007

DOI: 10.1007/s10705-007-9094-6

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually