“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morphology



The evaluation of longitudinal dispersion in aquatic canopies is necessary to predict the behavior of dissolved species and suspended particles in marsh and wetland systems. Here we consider the influence of canopy morphology on longitudinal dispersion, focusing on transport before constituents have mixed over depth. Velocity and longitudinal dispersion were measured in a model canopy with vertically varying canopy density. The vertical variation in canopy morphology generates vertical variation in the mean velocity profile, which in turn creates mean-shear dispersion. We develop and verify a model that predicts the mean-shear dispersion in the near field from morphological characteristics of the canopy, such as stem diameter and frontal area. Close to the source, longitudinal dispersion is dominated by velocity heterogeneity at the scale of individual stems. However, within a distance of approximately 1 m, the shear dispersion associated with velocity heterogeneity over depth increases and eclipses this smaller-scale process.



Environmental Fluid MechanicsSpringer Journals

Published: Oct 1, 2006

DOI: 10.1007/s10652-006-9002-7

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.