“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

On Approximating a Scheduling Problem



Given a set of communication tasks (best described in terms of a weighted bipartite graph where one set of nodes denotes the senders, the other set the receivers, edges are communication tasks, and the weight of an edge is the time required for transmission), we wish to minimize the total time required for the completion of all communication tasks assuming that tasks can be preempted (that is, each edge can be subdivided into many edges with weights adding up to the edge's original weight) and that preemption comes with a cost. In this paper, we first prove that one cannot approximate this problem within a factor smaller than $$\frac{7}{6}$$ unless P=NP . It is known that a simple approximation algorithm achieves within a ratio of two (H. Choi and S.L. Hakimi, Algorithmica , vol. 3, pp. 223–245, 1988). However, our experimental results show that its performance is worse than the originally proposed heuristic algorithm (I.S. Gopal and C.K. Wong, IEEE Transactions on Communications , vol. 33, pp. 497–501, 1985). We devise a more sophisticated algorithm, called the potential function algorithm which, on the one hand, achieves a provable approximation ratio of two, and on the other hand, shows very good experimental performance. Moreover, the way in which our more sophisticated algorithm derives from the simple one, suggests a hierarchy of algorithms, all of which have a worst-case performance at most two, but which we suspect to have increasingly better performance, both in worst case and with actual instances.



Journal of Combinatorial OptimizationSpringer Journals

Published: Sep 1, 2001

DOI: 10.1023/A:1011441109660

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually