“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Microfabricated glass devices for rapid single cell immobilization in mouse zygote microinjection

This paper presents the design and microfabrication of a vacuum-based cell holding device for single-cell immobilization and the use of the device in mouse zygote microinjection. The device contains many through-holes, constructed via two-sided glass wet etching and polydimethylsiloxane (PDMS)-glass bonding. Experimental results of mouse zygote immobilization and microinjection demonstrate that the device is effective for rapid cell immobilization and does not produce negative effect on embryonic development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Microdevices Springer Journals

Loading next page...
 
/lp/springer-journal/microfabricated-glass-devices-for-rapid-single-cell-immobilization-in-xBHOi0jiwX

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.