“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Experimental and numerical characterization of magnetophoretic separation for MEMS-based biosensor applications



Magnetophoretic isolation of biochemical and organic entities in a microfluidic environment is a popular tool for a wide range of bioMEMS applications, including biosensors. An experimental and numerical analysis of magnetophoretic capture of magnetic microspheres in a microfluidic channel under the influence of an external field is investigated. For a given microfluidic geometry, the operating conditions for marginal capture is found to be interrelated in such a manner that a unique critical capture parameter $$ \Pi _{{{\text{crit}}}} = {{\left( {I_{{{\text{crit}}}} {\text{a}}} \right)}^{2} } \mathord{\left/ {\vphantom {{{\left( {I_{{{\text{crit}}}} {\text{a}}} \right)}^{2} } {{\text{Q}}\eta }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}\eta } $$ , that is proportional to the ratio of the magnetic force to viscous force, can be identified. Influences of the flow rate, magnetic field and other parameters on the particle trajectories in the microfluidic channel are investigated both numerically and through bright-field imaging under a microscope. Like the event of critical capture, particle trajectories are also found to be guided by a similar parameter, π. Magnetophoretic capture efficiency of the device is also evaluated as a function of a nondimensional number $$ \Pi ^{*} = {\chi {\text{P}}^{2} {\text{a}}^{2} } \mathord{\left/ {\vphantom {{\chi {\text{P}}^{2} {\text{a}}^{2} } {{\left( {{\text{U}}_{0} \eta {\text{h}}^{5} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {{\text{U}}_{0} \eta {\text{h}}^{5} } \right)}} $$ , when both numerical and experimental results are found to agree reasonably well. Results of this investigation can be applied for the selection of the operating parameters and for prediction of device performance of practical microfluidic separators.



Biomedical MicrodevicesSpringer Journals

Published: Feb 1, 2010

DOI: 10.1007/s10544-009-9354-0

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually