“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field



Many developing neural systems exhibit spontaneous activity (O’Donovan, Curr Opin Neurobiol 9:94–104, 1999 ; Feller, Neuron 22:653–656, 1999 ) characterized by episodes of discharge (active phases) when many cells are firing, separated by silent phases during which few cells fire. Various models exhibit features of episodic behavior by means of recurrent excitation for supporting an episode and slow activity-dependent depression for terminating one. The basic mechanism has been analyzed using mean-field, firing-rate models. Firing-rate models are typically formulated ad hoc , not derived from a spiking network description, and the effects of substantial heterogeneity amongst the units are not usually considered. Here we develop an excitatory network of spiking neurons ( N -cell model) with slow synaptic depression to model episodic rhythmogenesis. This N -cell model displays episodic behavior over a range of heterogeneity in bias currents. Important features of the episodic behavior include orderly recruitment of individual cells during silent phases and existence of a dynamical process whereby a small critical subpopulation of intermediate excitability conveys synaptic drive from active to silent cells. We also derive a general self-consistency equation for synaptic drive that includes cell heterogeneity explicitly. We use this mean-field description to expose the dynamical bistability that underlies episodic behavior in the heterogeneous network. In a systematic numerical study we find that the robustness of the episodic behavior improves with increasing heterogeneity. Furthermore, the heterogeneity of depression variables (imparted by the heterogeneity in cellular firing thresholds) plays an important role in this improvement: it renders the network episodic behavior more robust to variations in excitability than if depression is uniformized. We also investigate the effects of noise vs. heterogeneity on the robustness of episodic behavior, especially important for the developing nervous system. We demonstrate that noise-induced episodes are very fragile, whereas heterogeneity-produced episodic rhythm is robust.



Journal of Computational NeuroscienceSpringer Journals

Published: Aug 1, 2008

DOI: 10.1007/s10827-007-0064-4

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually