“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Effects of soil physical characteristics and biotic interferences on the herbaceous community composition and species diversity on the campus of Banaras Hindu University, India



Soil, water and species diversity relationships are central components of the vegetation ecology. In this connection, the present study was performed on the three sites within the campus of Banaras Hindu University of India, to relate herbaceous species diversity to soil physical characteristic and the intensity of biotic interferences. At each site, three, 10 m × 10 m plots were randomly established and within each plot, four quadrats each 50 cm × 50 cm were randomly placed for sampling. For each quadrat, number of individuals and their herbage cover were recorded by species. Soil physical characteristics (soil moisture, water-holding capacity, soil porosity and bulk density), elements of biotic interferences and α-diversity and its components were determined for each plot. The plots were ordinated by Non-metric Multidimensional Scaling (NMS) using Importance Value Indices of the component species. Results showed that the selected locations differed in terms of soil moisture and species diversity parameters due to differences in biotic interferences. NMS ordination yielded three groups corresponding to the three communities experiencing different intensity of land use. NMS axes were substantially related to the soil and herbaceous diversity parameters and suggested that the elements of soil physical characteristics, intensity of biotic interferences and regional herbaceous species pool had profound effect on the organization and determination of herbaceous floristic composition. Further, the sample locations exhibiting greater soil moisture, water-holding capacity, soil porosity and lesser soil bulk density harboured greater herbaceous diversity. A negative relationship between indices of species diversity and soil bulk density revealed that the dry and compact soils due to greater biotic pressure contributed to the loss of species diversity. Reduction in livestock numbers, grazing pressure and soil bulk density could be helpful in the promotion of soil quality and species diversity.



The EnvironmentalistSpringer Journals

Published: Sep 1, 2010

DOI: 10.1007/s10669-010-9276-7

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually