“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Effect of polymer-coated urea and tillage on the dynamics of available N and nitrous oxide emission from Gray Luvisols



Two field experiments were conducted to assess the effectiveness of polymer-coated urea (PCU) vs. conventional urea (urea) in minimizing nitrate accumulation in soil and nitrous oxide (N 2 O) emission while optimizing available N supply. The trials were located on Dark Gray Luvisols (Typic Cryoboralf) near Beaverlodge, Alberta (2004–2007) and Star City, Saskatchewan (2004–2006), in the north western Canadian Prairies. The treatments comprised of combinations of two tillage systems (conventional and no tillage), the two forms of urea (applied at commercial rates, 50–60 kg N ha −1 ), and time of application (side-banded in spring or fall). Tillage had little effect on the measured soil variables. Available N at the anthesis growth stage was higher with spring- than fall-banded N in three of four site-years, and with PCU than urea in two site-years. At seeding, nitrate in the soil layers to 60-cm depth, especially the top 15 cm, was mostly higher for fall- than spring-banded treatments but differed less between the forms of urea. Fall application, therefore, has greater potential for gaseous N and leaching losses early in the growing season when crops have low N requirements, and hence is not advisable. Nitrous oxide emission from spring to fall was higher with the fertilized treatments in three of five site-years and not different between fertilized and unfertilized treatments in the other site-years. At Beaverlodge, N 2 O loss was low in 2 years and showed few significant treatment effects. At Star City, N 2 O loss was 1.5- to 1.7-fold higher from urea than PCU treatments, and up to 1.5-fold lower from spring than fall application. It is concluded that although PCU can increase available N during the growth period and reduce N 2 O loss in some years compared with urea, the time of N application had a consistently greater effect than the type of urea in enhancing crop N recovery and reducing N loss to the environment.



Nutrient Cycling in AgroecosystemsSpringer Journals

Published: Jun 1, 2011

DOI: 10.1007/s10705-011-9428-2

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually