“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin



Broad spectrum therapeutic potential of curcumin is usually hampered by its photodegradation and low bioavailability. Present investigation was designed with an objective to develop transferrin-mediated solid lipid nanoparticles (Tf-C-SLN) resistant to the photostability and capable of enhancing the bioavailability by targeted drug delivery to elicit anticancer activity against SH-SY5Y neuroblastoma cells in vitro. Hot homogenization method was used for the formulation of Tf-C-SLN and evaluated physicochemically using parameters such as, size, zeta potential, entrapment efficiency and photostability, transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), differential scanning colorimetry (DSC), and in vitro release study. In vitro cytotoxicity and apoptosis investigations were performed using microplate analysis and flow cytometry techniques. The physicochemical characterization confirmed the suitability of formulation method and various parameters therein. TEM investigation revealed the spherical morphology while NMR and DSC study confirmed the entrapment of curcumin inside the nanoparticles. The cytotoxicity, reactive oxygen species, and cell uptake were found to be increased considerably with Tf-C-SLN compared with curcumin-solubilized surfactant solution, and curcumin-loaded SLN (C-SLN) suggesting the targeting effect. AnnexinV-FITC/PI double staining, DNA analysis, caspase detection, and reduced mitochondrial potential confirmed the induction of apoptosis with nanoparticle treatment. Enhanced anticancer activity with Tf-C-SLN compared with curcumin-solubilized surfactant solution and C-SLN was observed from flow cytometry investigations with apoptosis being the major underlying mechanism. The in vitro observations of our investigation are very compelling and concrete to advocate the potential of Tf-C-SLN in enhancing the anticancer effect of curcumin against neuroblastoma in vivo and possible clinical applications.



Cancer NanotechnologySpringer Journals

Published: Dec 1, 2012

DOI: 10.1007/s12645-012-0031-2

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually