“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

An atlas of gene expression from seed to seed through barley development



Assaying relative and absolute levels of gene expression in a diverse series of tissues is a central step in the process of characterizing gene function and a necessary component of almost all publications describing individual genes or gene family members. However, throughout the literature, such studies lack consistency in genotype, tissues analyzed, and growth conditions applied, and, as a result, the body of information that is currently assembled is fragmented and difficult to compare between different studies. The development of a comprehensive platform for assaying gene expression that is available to the entire research community provides a major opportunity to assess whole biological systems in a single experiment. It also integrates detailed knowledge and information on individual genes into a unified framework that provides both context and resource to explore their contributions in a broader biological system. We have established a data set that describes the expression of 21,439 barley genes in 15 tissues sampled throughout the development of the barley cv. Morex grown under highly controlled conditions. Rather than attempting to address a specific biological question, our experiment was designed to provide a reference gene expression data set for barley researchers; a gene expression atlas and a comparative data set for those investigating genes or regulatory networks in other plant species. In this paper we describe the tissues sampled and their transcriptomes, and provide summary information on genes that are either specifically expressed in certain tissues or show correlated expression patterns across all 15 tissue samples. Using specific examples and an online tutorial, we describe how the data set can be interrogated for patterns and levels of barley gene expression and how the resulting information can be used to generate and/or test specific biological hypotheses.



Functional & Integrative GenomicsSpringer Journals

Published: Jul 1, 2006

DOI: 10.1007/s10142-006-0025-4

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually