“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

A one-dimensional heat transfer model of the Antarctic Ice Sheet and modeling of snow temperatures at Dome A, the summit of Antarctic Plateau



A vertical one-dimensional numerical model for heat transferring within the near-surface snow layer of the Antarctic Ice Sheet was developed based on simplified parameterizations of associated physical processes for the atmosphere, radiation, and snow/ice systems. Using the meteorological data of an automatic weather station (AWS) at Dome A (80°22′S, 70°22′E), we applied the model to simulate the seasonal temperature variation within a depth of 20 m. Comparison of modeled results with observed snow temperatures at 4 measurement depths (0.1, 1, 3, 10 m) shows good agreement and consistent seasonal variations. The model results reveal the vertical temperature structure within the near-surface snow layer and its seasonal variance with more details than those by limited measurements. Analyses on the model outputs of the surface energy fluxes show that: 1) the surface energy balance at Dome A is characterized by the compensation between negative net radiation and the positive sensible fluxes, and 2) the sensible heat is on average transported from the atmosphere to the snow, and has an evident increase in spring. The results are considered well representative for the highest interior Antarctic Plateau.



Science in China Series D: Earth SciencesSpringer Journals

Published: May 1, 2010

DOI: 10.1007/s11430-010-0017-z

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.