“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

A micro-channel-well system for culture and differentiation of embryonic stem cells on different types of substrate



We have developed a combined micro-channel and micro-well system for easy cell loading, culture and post-culture operation on a chip. To demonstrate the reliability of the system, on chip cell culture and differentiation were performed with different types of substrates made of culture dish, glass cover slide and polydimethylsiloaxe (PDMS). As expected, mouse embryo fibroblasts (MEF) showed different adhesion and growth rate on different substrates. When embryonic stem (ES) cells were co-cultured with MEFs, the formation of ES colonies is efficient on both glass and Petri dish, although PDMS could also be used. Finally, ES cell differentiation with neuron growth factors was performed on different substrates, showing clear advantages of using culture Petri dish over both glass and PDMS.



Biomedical MicrodevicesSpringer Journals

Published: Jun 1, 2010

DOI: 10.1007/s10544-010-9407-4

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.