Shared-risk link group (SRLG)-diverse path provisioning under hybrid service level agreements in wavelength-routed optical mesh networks: formulation and solution approaches

Shared-risk link group (SRLG)-diverse path provisioning under hybrid service level agreements in... The static provisioning problem in wavelength-routed optical networks has been studied for many years. However, service providers are still facing the challenges arising from the special requirements for provisioning services at the optical layer. In this paper, we incorporate some realistic constraints into the static provisioning problem, and formulate it under different network resource availability conditions. We consider three classes of shared risk link group (SRLG)-diverse path protection schemes: dedicated, shared, and unprotected. We associate with each connection request a lightpath length constraint and a revenue value. When the network resources are not sufficient to accommodate all the connection requests, the static provisioning problem is formulated as a revenue maximization problem, whose objective is maximizing the total revenue value. When the network has sufficient resources, the problem becomes a capacity minimization problem with the objective of minimizing the number of used wavelength-links. We give integer linear programming (ILP) formulations for these problems. Because solving these ILP problems is extremely time consuming, we propose a tabu search heuristic to solve these problems within a reasonable time. Experimental results are presented to compare the solutions obtained by an ILP solver, the tabu search heuristic and a divide-and-conquer greedy heuristic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of SPIE SPIE

Shared-risk link group (SRLG)-diverse path provisioning under hybrid service level agreements in wavelength-routed optical mesh networks: formulation and solution approaches

Proceedings of SPIE, Volume 5285 (1) – Oct 3, 2003

Loading next page...
 
/lp/spie/shared-risk-link-group-srlg-diverse-path-provisioning-under-hybrid-MBxt06aVYp
Publisher
SPIE
Copyright
Copyright © 2003 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
ISSN
0277-786X
eISSN
1996-756X
D.O.I.
10.1117/12.533306
Publisher site
See Article on Publisher Site

Abstract

The static provisioning problem in wavelength-routed optical networks has been studied for many years. However, service providers are still facing the challenges arising from the special requirements for provisioning services at the optical layer. In this paper, we incorporate some realistic constraints into the static provisioning problem, and formulate it under different network resource availability conditions. We consider three classes of shared risk link group (SRLG)-diverse path protection schemes: dedicated, shared, and unprotected. We associate with each connection request a lightpath length constraint and a revenue value. When the network resources are not sufficient to accommodate all the connection requests, the static provisioning problem is formulated as a revenue maximization problem, whose objective is maximizing the total revenue value. When the network has sufficient resources, the problem becomes a capacity minimization problem with the objective of minimizing the number of used wavelength-links. We give integer linear programming (ILP) formulations for these problems. Because solving these ILP problems is extremely time consuming, we propose a tabu search heuristic to solve these problems within a reasonable time. Experimental results are presented to compare the solutions obtained by an ILP solver, the tabu search heuristic and a divide-and-conquer greedy heuristic.

Journal

Proceedings of SPIESPIE

Published: Oct 3, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off