Quality of protection (QoP): a quantitative unifying paradigm to protection service grades

Quality of protection (QoP): a quantitative unifying paradigm to protection service grades In this paper we discuss a quantitative framework for best- effort protection of the optical layer. This framework provides a way to bridge the gap between two known protection grades of fully protected connections vis-a-vis unprotected protection. The framework allows to specify the probability with which the connection will be protected, providing the customer with a full range of protection guarantees at possibly different prices. Since connections may be partially protected, the required protection bandwidth can be reduced. The amount of protection bandwidth is shown to depend on an 'equivalent survivable bandwidth.' The framework also extends to preemptable (low priority) connections and to different ring architectures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of SPIE SPIE

Quality of protection (QoP): a quantitative unifying paradigm to protection service grades

Proceedings of SPIE, Volume 4599 (1) – Aug 9, 2001

Loading next page...
1
 
/lp/spie/quality-of-protection-qop-a-quantitative-unifying-paradigm-to-0XPoF3wWDG
Publisher
SPIE
Copyright
Copyright © 2003 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
ISSN
0277-786X
eISSN
1996-756X
D.O.I.
10.1117/12.436060
Publisher site
See Article on Publisher Site

Abstract

In this paper we discuss a quantitative framework for best- effort protection of the optical layer. This framework provides a way to bridge the gap between two known protection grades of fully protected connections vis-a-vis unprotected protection. The framework allows to specify the probability with which the connection will be protected, providing the customer with a full range of protection guarantees at possibly different prices. Since connections may be partially protected, the required protection bandwidth can be reduced. The amount of protection bandwidth is shown to depend on an 'equivalent survivable bandwidth.' The framework also extends to preemptable (low priority) connections and to different ring architectures.

Journal

Proceedings of SPIESPIE

Published: Aug 9, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off