Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract. Manual segmentation of anatomy in brain MRI data taken to be the closest to the “gold standard” in quality is often used in automated registration-based segmentation paradigms for transfer of template labels onto the unlabeled MRI images. This study presents a library of template data with 16 subcortical structures in the central brain area which were manually labeled for MRI data from 22 children (8 male, mean age = 8 ± 0.6 years ). The lateral ventricle, thalamus, caudate, putamen, hippocampus, cerebellum, third vevntricle, fourth ventricle, brainstem, and corpuscallosum were segmented by two expert raters. Cross-validation experiments with randomized template subset selection were conducted to test for their ability to accurately segment MRI data under an automated segmentation pipeline. A high value of the dice similarity coefficient ( 0.86 ± 0.06 , min = 0.74 , max = 0.96 ) and small Hausdorff distance ( 3.33 ± 4.24 , min = 0.63 , max = 25.24 ) of the automated segmentation against the manual labels was obtained on this template library data. Additionally, comparison with segmentation obtained from adult templates showed significant improvement in accuracy with the use of an age-matched library in this cohort. A manually delineated pediatric template library such as the one described here could provide a useful benchmark for testing segmentation algorithms.
Journal of Medical Imaging – SPIE
Published: Oct 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.