Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract.Dual-energy computed tomography (CT) has the potential to decompose tissues into different materials. However, the classic direct inversion (DI) method for multimaterial decomposition (MMD) cannot accurately separate more than two basis materials due to the ill-posed problem and amplified image noise. We propose an integrated MMD method that addresses the piecewise smoothness and intrinsic sparsity property of the decomposition image. The proposed MMD was formulated as an optimization problem including a quadratic data fidelity term, an isotropic total variation term that encourages image smoothness, and a nonconvex penalty function that promotes decomposition image sparseness. The mass and volume conservation rule was formulated as the probability simplex constraint. An accelerated primal-dual splitting approach with line search was applied to solve the optimization problem. The proposed method with different penalty functions was compared against DI on a digital phantom, a Catphan® 600 phantom, a quantitative imaging phantom, and a pelvis patient. The proposed framework distinctly separated the CT image up to 12 basis materials plus air with high decomposition accuracy. The cross talks between two different materials are substantially reduced, as shown by the decreased nondiagonal elements of the normalized cross correlation (NCC) matrix. The mean square error of the measured electron densities was reduced by 72.6%. Across all datasets, the proposed method improved the average volume fraction accuracy from 61.2% to 99.9% and increased the diagonality of the NCC matrix from 0.73 to 0.96. Compared with DI, the proposed MMD framework improved decomposition accuracy and material separation.
Journal of Medical Imaging – SPIE
Published: Oct 1, 2019
Keywords: dual-energy computed tomography; multimaterial decomposition; primal-dual splitting; nonconvex optimization
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.