Experimental quantum cryptography scheme based on orthogonal states: preliminary results

Experimental quantum cryptography scheme based on orthogonal states: preliminary results Since, in general, non-orthogonal states cannot be cloned, any eavesdropping attempt in a Quantum Communication scheme using non-orthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in Quantum Cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman Phys. Rev. Lett. 75 (7), pp. 12391243, 1995 proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets which travel along separate channels, i.e. two different paths inside a balanced Mach-Zehnder interferometer. Here we present an experiment realizing this scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of SPIE SPIE

Experimental quantum cryptography scheme based on orthogonal states: preliminary results

Proceedings of SPIE, Volume 7702 (1) – Apr 15, 2010

Loading next page...
 
/lp/spie/experimental-quantum-cryptography-scheme-based-on-orthogonal-states-f2No51j0lO
Publisher
SPIE
Copyright
Copyright © 2010 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
ISSN
0277-786X
eISSN
1996-756X
D.O.I.
10.1117/12.848778
Publisher site
See Article on Publisher Site

Abstract

Since, in general, non-orthogonal states cannot be cloned, any eavesdropping attempt in a Quantum Communication scheme using non-orthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in Quantum Cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman Phys. Rev. Lett. 75 (7), pp. 12391243, 1995 proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets which travel along separate channels, i.e. two different paths inside a balanced Mach-Zehnder interferometer. Here we present an experiment realizing this scheme.

Journal

Proceedings of SPIESPIE

Published: Apr 15, 2010

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off