Electronic traps in OLED transport layers: influence of doping and accelerated aging

Electronic traps in OLED transport layers: influence of doping and accelerated aging The methods of thermally stimulated currents (TSC) and thermally stimulated luminescence (TSL) were employed to reveal the trap structure of the most prominent organic semiconductors materials such as tris-8-(hydroxyquinoline) (Alq 3 ), N-N'-di(1-naphtyl)-N-N'-diphenylbenzidine ((alpha) -NPD), and 4,4',4'-tris-(N-2-naphtyl)-N-phenylamino- triphenylamine (1-Naph-DATA). The energetic trap depths and a lower limit of the trap densities were derived for all investigated materials by means of the initial-rise method and curve fitting techniques. Typical activation energies range between 0.1 and 0.6 eV and trap concentrations differ between 10 14 and 10 17 cm -3 . Most materials exhibit trap levels with a single activation energy, however, in Alq 3 a brought distribution of trap depths will be reported. In addition, the polarity of the dominant trap levels was determined by a comparison of TSC spectra from optically and electrically filled traps. Besides the trap detection and characterization the effect of doping and accelerated aging on the trap structure will be shown. TSC and TSL results on rubrene doped Alq 3 reveals a characteristic shift in the trap depth indicating new rubrene related trapping site. The effect of aging on the trap structure of organic semiconductors in 'potentially harmful' atmospheres such as oxygen and humidity and their correlation to I-V characteristics will also be reported. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of SPIE SPIE

Electronic traps in OLED transport layers: influence of doping and accelerated aging

Loading next page...
 
/lp/spie/electronic-traps-in-oled-transport-layers-influence-of-doping-and-RB0O7mwTcX
Publisher
SPIE
Copyright
Copyright © 2009 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
ISSN
0277-786X
eISSN
1996-756X
DOI
10.1117/12.416902
Publisher site
See Article on Publisher Site

Abstract

The methods of thermally stimulated currents (TSC) and thermally stimulated luminescence (TSL) were employed to reveal the trap structure of the most prominent organic semiconductors materials such as tris-8-(hydroxyquinoline) (Alq 3 ), N-N'-di(1-naphtyl)-N-N'-diphenylbenzidine ((alpha) -NPD), and 4,4',4'-tris-(N-2-naphtyl)-N-phenylamino- triphenylamine (1-Naph-DATA). The energetic trap depths and a lower limit of the trap densities were derived for all investigated materials by means of the initial-rise method and curve fitting techniques. Typical activation energies range between 0.1 and 0.6 eV and trap concentrations differ between 10 14 and 10 17 cm -3 . Most materials exhibit trap levels with a single activation energy, however, in Alq 3 a brought distribution of trap depths will be reported. In addition, the polarity of the dominant trap levels was determined by a comparison of TSC spectra from optically and electrically filled traps. Besides the trap detection and characterization the effect of doping and accelerated aging on the trap structure will be shown. TSC and TSL results on rubrene doped Alq 3 reveals a characteristic shift in the trap depth indicating new rubrene related trapping site. The effect of aging on the trap structure of organic semiconductors in 'potentially harmful' atmospheres such as oxygen and humidity and their correlation to I-V characteristics will also be reported.

Journal

Proceedings of SPIESPIE

Published: Feb 2, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off