Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Development of an approach to extracting coronary arteries and detecting stenosis in invasive coronary angiograms

Development of an approach to extracting coronary arteries and detecting stenosis in invasive... Abstract.Purpose: In stable coronary artery disease (CAD), reduction in mortality and/or myocardial infarction with revascularization over medical therapy has not been reliably achieved. Coronary arteries are usually extracted to perform stenosis detection. As such, developing accurate segmentation of vascular structures and quantification of coronary arterial stenosis in invasive coronary angiograms (ICA) is necessary.Approach: A multi-input and multiscale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation. The proposed model generated a refined prediction map with the following two training stages: (i) stage I coarsely segmented the major coronary arteries from preprocessed single-channel ICAs and generated the probability map of arteries; and (ii) during the stage II, a three-channel image consisting of the original preprocessed image, a generated probability map, and an edge-enhanced image generated from the preprocessed image was fed to the proposed MIMS U-Net to produce the final segmentation result. After segmentation, an arterial stenosis detection algorithm was developed to extract vascular centerlines and calculate arterial diameters to evaluate stenotic level.Results: Experimental results demonstrated that the proposed method achieved an average Dice similarity coefficient of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patients. Moreover, our stenosis detection algorithm achieved a true positive rate of 0.6668 and a positive predictive value of 0.7043.Conclusions: Our proposed approach has great promise for clinical use and could help physicians improve diagnosis and therapeutic decisions for CAD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Imaging SPIE

Development of an approach to extracting coronary arteries and detecting stenosis in invasive coronary angiograms

Loading next page...
 
/lp/spie/development-of-an-approach-to-extracting-coronary-arteries-and-psBBW0hLY0

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
SPIE
Copyright
© 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
ISSN
2329-4302
eISSN
2329-4310
DOI
10.1117/1.jmi.9.4.044002
Publisher site
See Article on Publisher Site

Abstract

Abstract.Purpose: In stable coronary artery disease (CAD), reduction in mortality and/or myocardial infarction with revascularization over medical therapy has not been reliably achieved. Coronary arteries are usually extracted to perform stenosis detection. As such, developing accurate segmentation of vascular structures and quantification of coronary arterial stenosis in invasive coronary angiograms (ICA) is necessary.Approach: A multi-input and multiscale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation. The proposed model generated a refined prediction map with the following two training stages: (i) stage I coarsely segmented the major coronary arteries from preprocessed single-channel ICAs and generated the probability map of arteries; and (ii) during the stage II, a three-channel image consisting of the original preprocessed image, a generated probability map, and an edge-enhanced image generated from the preprocessed image was fed to the proposed MIMS U-Net to produce the final segmentation result. After segmentation, an arterial stenosis detection algorithm was developed to extract vascular centerlines and calculate arterial diameters to evaluate stenotic level.Results: Experimental results demonstrated that the proposed method achieved an average Dice similarity coefficient of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patients. Moreover, our stenosis detection algorithm achieved a true positive rate of 0.6668 and a positive predictive value of 0.7043.Conclusions: Our proposed approach has great promise for clinical use and could help physicians improve diagnosis and therapeutic decisions for CAD.

Journal

Journal of Medical ImagingSPIE

Published: Jul 1, 2022

Keywords: coronary artery disease; invasive coronary angiograms; image segmentation; deep learning

References