Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Computational reader design and statistical performance evaluation of an in-silico imaging clinical trial comparing digital breast tomosynthesis with full-field digital mammography

Computational reader design and statistical performance evaluation of an in-silico imaging... Abstract.A recent study reported on an in-silico imaging trial that evaluated the performance of digital breast tomosynthesis (DBT) as a replacement for full-field digital mammography (FFDM) for breast cancer screening. In this in-silico trial, the whole imaging chain was simulated, including the breast phantom generation, the x-ray transport process, and computational readers for image interpretation. We focus on the design and performance characteristics of the computational reader in the above-mentioned trial. Location-known lesion (spiculated mass and clustered microcalcifications) detection tasks were used to evaluate the imaging system performance. The computational readers were designed based on the mechanism of a channelized Hotelling observer (CHO), and the reader models were selected to trend human performance. Parameters were tuned to ensure stable lesion detectability. A convolutional CHO that can adapt a round channel function to irregular lesion shapes was compared with the original CHO and was found to be suitable for detecting clustered microcalcifications but was less optimal in detecting spiculated masses. A three-dimensional CHO that operated on the multiple slices was compared with a two-dimensional (2-D) CHO that operated on three versions of 2-D slabs converted from the multiple slices and was found to be optimal in detecting lesions in DBT. Multireader multicase reader output analysis was used to analyze the performance difference between FFDM and DBT for various breast and lesion types. The results showed that DBT was more beneficial in detecting masses than detecting clustered microcalcifications compared with FFDM, consistent with the finding in a clinical imaging trial. Statistical uncertainty smaller than 0.01 standard error for the estimated performance differences was achieved with a dataset containing approximately 3000 breast phantoms. The computational reader design methodology presented provides evidence that model observers can be useful in-silico tools for supporting the performance comparison of breast imaging systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Imaging SPIE

Computational reader design and statistical performance evaluation of an in-silico imaging clinical trial comparing digital breast tomosynthesis with full-field digital mammography

Loading next page...
 
/lp/spie/computational-reader-design-and-statistical-performance-evaluation-of-5mbXTyrJle

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
SPIE
Copyright
© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
ISSN
2329-4302
eISSN
2329-4310
DOI
10.1117/1.JMI.7.4.042802
Publisher site
See Article on Publisher Site

Abstract

Abstract.A recent study reported on an in-silico imaging trial that evaluated the performance of digital breast tomosynthesis (DBT) as a replacement for full-field digital mammography (FFDM) for breast cancer screening. In this in-silico trial, the whole imaging chain was simulated, including the breast phantom generation, the x-ray transport process, and computational readers for image interpretation. We focus on the design and performance characteristics of the computational reader in the above-mentioned trial. Location-known lesion (spiculated mass and clustered microcalcifications) detection tasks were used to evaluate the imaging system performance. The computational readers were designed based on the mechanism of a channelized Hotelling observer (CHO), and the reader models were selected to trend human performance. Parameters were tuned to ensure stable lesion detectability. A convolutional CHO that can adapt a round channel function to irregular lesion shapes was compared with the original CHO and was found to be suitable for detecting clustered microcalcifications but was less optimal in detecting spiculated masses. A three-dimensional CHO that operated on the multiple slices was compared with a two-dimensional (2-D) CHO that operated on three versions of 2-D slabs converted from the multiple slices and was found to be optimal in detecting lesions in DBT. Multireader multicase reader output analysis was used to analyze the performance difference between FFDM and DBT for various breast and lesion types. The results showed that DBT was more beneficial in detecting masses than detecting clustered microcalcifications compared with FFDM, consistent with the finding in a clinical imaging trial. Statistical uncertainty smaller than 0.01 standard error for the estimated performance differences was achieved with a dataset containing approximately 3000 breast phantoms. The computational reader design methodology presented provides evidence that model observers can be useful in-silico tools for supporting the performance comparison of breast imaging systems.

Journal

Journal of Medical ImagingSPIE

Published: Jul 1, 2020

Keywords: computational reader; model observer; channelized hoteling model observer; digital breast tomosynthesis; task-based performance assessment; virtual clinical trial

There are no references for this article.