Change in the bulk resistivity of CdZnTe with selected near IR light

Change in the bulk resistivity of CdZnTe with selected near IR light The change in bulk resistivity of CdZnTe (CZT) crystals was measured during infrared (IR) light between 950 and 1000 nm. The crystals are grown using one of the state-of-the-art methods either the traveling heating method or the modified Bridgman method. The change resistivity was evaluated using the steady-state current with and without light. Additionally, the change in current with both IR sources were correlated to the influence of secondary phases (SP) in each crystal using IR transmission microscopy to determine whether the number and size of the impurities has a drastic effect based on the current-voltage (IV) characteristics. SP at various depths within CZT are connected to the existence of variable depth, IR-excitable traps that lie within the bandgap. The release of these traps will significantly affect the overall current in the system. However, the current increase may not match the overall energy of the light utilized are more dependent on the size and quantity for each energy range. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of SPIE SPIE

Loading next page...
 
/lp/spie/change-in-the-bulk-resistivity-of-cdznte-with-selected-near-ir-light-0ll8N2N9Q0
Publisher
SPIE
Copyright
COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
ISSN
0277-786X
eISSN
1996-756X
DOI
10.1117/12.2063042
Publisher site
See Article on Publisher Site

Abstract

The change in bulk resistivity of CdZnTe (CZT) crystals was measured during infrared (IR) light between 950 and 1000 nm. The crystals are grown using one of the state-of-the-art methods either the traveling heating method or the modified Bridgman method. The change resistivity was evaluated using the steady-state current with and without light. Additionally, the change in current with both IR sources were correlated to the influence of secondary phases (SP) in each crystal using IR transmission microscopy to determine whether the number and size of the impurities has a drastic effect based on the current-voltage (IV) characteristics. SP at various depths within CZT are connected to the existence of variable depth, IR-excitable traps that lie within the bandgap. The release of these traps will significantly affect the overall current in the system. However, the current increase may not match the overall energy of the light utilized are more dependent on the size and quantity for each energy range.

Journal

Proceedings of SPIESPIE

Published: Sep 9, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off