Adaptive robust optical fiber receiver/transmitter

Adaptive robust optical fiber receiver/transmitter In the next decade, data transmission with speeds at several tens of gigabits per second (Gb/s) and beyond in short-haul local area and metropolitan area computer networks, as well as long- haul telecommunications networks, will be necessary to satisfy the ever increasing demands on bandwidth. Time division multiplexing based transmission systems become increasingly difficult to implement at higher speeds due to the speed limitations of electronics. In addition, these networks based on single wavelength transmission, use the available bandwidth inefficiently. As a result, both timing synchronization and bandwidth sharing among large numbers of users become major challenges. Wavelength division multiplexing (WDM) eases most of these problems; but introduces wavelength synchronization as the primary technical hurdle. The adaptive robust WDM receiver adjusts dynamically to the sources and thus alleviates many of the most serious and costly disadvantages of WDM. The technical burdens of WDM transmission are shifted to the receiver which is designed to accommodate the manufacturing and operating imperfects of the transmitter sources. Consequently, the receiver has then to be more sophisticated, but the added complexity in the receiver is in VLSI, simple PIN diodes, and passive guided wave optics. These components are inherently among the least expensive components in an optoelectronic system. Commercial WDM systems, especially in local area computer network environments, can thus be produced at significantly lower cost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of SPIE SPIE

Adaptive robust optical fiber receiver/transmitter

Proceedings of SPIE, Volume 2690 (1) – May 1, 1996

Loading next page...
 
/lp/spie/adaptive-robust-optical-fiber-receiver-transmitter-FCBAzxvPGp
Publisher
SPIE
Copyright
Copyright © 2004 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
ISSN
0277-786X
eISSN
1996-756X
D.O.I.
10.1117/12.238932
Publisher site
See Article on Publisher Site

Abstract

In the next decade, data transmission with speeds at several tens of gigabits per second (Gb/s) and beyond in short-haul local area and metropolitan area computer networks, as well as long- haul telecommunications networks, will be necessary to satisfy the ever increasing demands on bandwidth. Time division multiplexing based transmission systems become increasingly difficult to implement at higher speeds due to the speed limitations of electronics. In addition, these networks based on single wavelength transmission, use the available bandwidth inefficiently. As a result, both timing synchronization and bandwidth sharing among large numbers of users become major challenges. Wavelength division multiplexing (WDM) eases most of these problems; but introduces wavelength synchronization as the primary technical hurdle. The adaptive robust WDM receiver adjusts dynamically to the sources and thus alleviates many of the most serious and costly disadvantages of WDM. The technical burdens of WDM transmission are shifted to the receiver which is designed to accommodate the manufacturing and operating imperfects of the transmitter sources. Consequently, the receiver has then to be more sophisticated, but the added complexity in the receiver is in VLSI, simple PIN diodes, and passive guided wave optics. These components are inherently among the least expensive components in an optoelectronic system. Commercial WDM systems, especially in local area computer network environments, can thus be produced at significantly lower cost.

Journal

Proceedings of SPIESPIE

Published: May 1, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off