Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Endocannabinoids as emerging suppressors of angiogenesis and tumor invasion (Review)

Endocannabinoids as emerging suppressors of angiogenesis and tumor invasion (Review) The medicinal properties of extracts from the hemp plant Cannabis sativa have been known for centuries but only in the 90s membrane receptors for the Cannabis major principle were discovered in mammalian cells. Later on the endogenous ligands for the cannabinoid receptors were identified and the term ‘endocannabinoid system’ was coined to indicate the complex signaling system of cannabinoid receptors, endogenous ligands and the enzymes responsible for their biosynthesis and inactivation. The ‘endocannabinoid system’ is involved in a broad range of functions and in a growing number of pathological conditions. There is increasing evidence that endocannabinoids are able to inhibit cancer cell growth in culture as well as in animal models. Most work has focused on the role of endocannabinoids in regulating tumor cell growth and apoptosis and ongoing research is addressed to further dissect the precise mechanisms of cannabinoid antitumor action. However, endocannabinoids are now emerging as suppressors of angiogenesis and tumor spreading since they have been reported to inhibit angiogenesis, cell migration and metastasis in different types of cancer, pointing to a potential role of the endocannabinoid system as a target for a therapeutic approach of such malignant diseases. The potential use of cannabinoids to retard tumor growth and spreading is even more appealing considering that they show a good safety profile, regarding toxicity, and are already used in cancer patients as palliatives to stimulate appetite and to prevent devastating effects such as nausea, vomiting and pain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oncology Reports Spandidos Publications

Endocannabinoids as emerging suppressors of angiogenesis and tumor invasion (Review)

Loading next page...
 
/lp/spandidos-publications/endocannabinoids-as-emerging-suppressors-of-angiogenesis-and-tumor-Q1vjg0toyS
Publisher
Spandidos Publications
Copyright
Copyright © Spandidos Publications
ISSN
1021-335X
eISSN
1791-2431
DOI
10.3892/or.17.4.813
Publisher site
See Article on Publisher Site

Abstract

The medicinal properties of extracts from the hemp plant Cannabis sativa have been known for centuries but only in the 90s membrane receptors for the Cannabis major principle were discovered in mammalian cells. Later on the endogenous ligands for the cannabinoid receptors were identified and the term ‘endocannabinoid system’ was coined to indicate the complex signaling system of cannabinoid receptors, endogenous ligands and the enzymes responsible for their biosynthesis and inactivation. The ‘endocannabinoid system’ is involved in a broad range of functions and in a growing number of pathological conditions. There is increasing evidence that endocannabinoids are able to inhibit cancer cell growth in culture as well as in animal models. Most work has focused on the role of endocannabinoids in regulating tumor cell growth and apoptosis and ongoing research is addressed to further dissect the precise mechanisms of cannabinoid antitumor action. However, endocannabinoids are now emerging as suppressors of angiogenesis and tumor spreading since they have been reported to inhibit angiogenesis, cell migration and metastasis in different types of cancer, pointing to a potential role of the endocannabinoid system as a target for a therapeutic approach of such malignant diseases. The potential use of cannabinoids to retard tumor growth and spreading is even more appealing considering that they show a good safety profile, regarding toxicity, and are already used in cancer patients as palliatives to stimulate appetite and to prevent devastating effects such as nausea, vomiting and pain.

Journal

Oncology ReportsSpandidos Publications

Published: Apr 1, 2007

There are no references for this article.