Tribological study of OH- and N-containing imidazoline derivatives as additives in water–glycol

Tribological study of OH- and N-containing imidazoline derivatives as additives in water–glycol Tribological properties of two hydroxyl- and only active nitrogen-containing water-soluble imidazoline derivatives, benzotriazole-containing imidazoline (BML) and caprylic acid-containing imidazoline (CML), as lubrication additive in water–glycol hydraulic fluid were evaluated with a four-ball tester. And the antirust and anticorrosion behaviors were also investigated. Results show that BML and CML were able to remarkably improve the antirust properties of water–glycol fluid when added at a low adding concentration, and also these performances of BML was better than CML. All additives exhibited good extreme pressure and antiwear properties, and BML showed better tribological properties than CML. Besides, the difference in the tribological and anticorrosion properties of these derivatives was closely related to their different molecular structures. There exists a synergistic tribological effect between benzotriazole and imidazoline group in the tribological and antiwear performances. Furthermore, significant improvement in the tribological performances of BML was detected and attributed to organic nitrogen compounds, iron oxide, and so on in tribofilm on the worn surfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology SAGE

Tribological study of OH- and N-containing imidazoline derivatives as additives in water–glycol

Loading next page...
 
/lp/sage/tribological-study-of-oh-and-n-containing-imidazoline-derivatives-as-kE2TwQSajq
Publisher
SAGE
Copyright
© IMechE 2018
ISSN
1350-6501
eISSN
2041-305X
D.O.I.
10.1177/1350650118781369
Publisher site
See Article on Publisher Site

Abstract

Tribological properties of two hydroxyl- and only active nitrogen-containing water-soluble imidazoline derivatives, benzotriazole-containing imidazoline (BML) and caprylic acid-containing imidazoline (CML), as lubrication additive in water–glycol hydraulic fluid were evaluated with a four-ball tester. And the antirust and anticorrosion behaviors were also investigated. Results show that BML and CML were able to remarkably improve the antirust properties of water–glycol fluid when added at a low adding concentration, and also these performances of BML was better than CML. All additives exhibited good extreme pressure and antiwear properties, and BML showed better tribological properties than CML. Besides, the difference in the tribological and anticorrosion properties of these derivatives was closely related to their different molecular structures. There exists a synergistic tribological effect between benzotriazole and imidazoline group in the tribological and antiwear performances. Furthermore, significant improvement in the tribological performances of BML was detected and attributed to organic nitrogen compounds, iron oxide, and so on in tribofilm on the worn surfaces.

Journal

Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering TribologySAGE

Published: Jan 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off