Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Effects of Voice System Design Components on Driver Workload

The Effects of Voice System Design Components on Driver Workload In-vehicle voice control systems are standard in most new vehicles. However, despite auditory-vocal interaction allowing drivers to keep their hands on the steering wheel and eyes on the forward roadway, recent findings indicate the potential for these systems to increase levels of workload and lead to lengthy interaction times. Although many studies have examined the distraction potential of interacting with in-vehicle voice control systems, more research is needed to understand the relationship between different system design components and workload. In this study, we investigate the role of system delay, system accuracy, and menu depth in determining the overall level of demand and interaction times on eight different 2017 model-year vehicles. Voice system accuracy was measured via playback of a pre-recorded sample of voice commands through a studio monitor mounted near the headrest. Menu depth and system delay were calculated by measuring, respectively, the number of interaction steps and total system processing time required to access common infotainment functions. These measures were validated through linear and multiple regression analyses with workload and task time collected in an on-road study. We found system delay and system accuracy to be significant predictors of task time and subjective measures of workload from the NASA Task Load Index and the Driving Activity Load Index. A In addition to providing valuable information on the role of separate voice control system design components on resulting levels of workload, these results extend past research by generalizing findings to multiple current auditory-vocal systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Record SAGE

The Effects of Voice System Design Components on Driver Workload

Loading next page...
 
/lp/sage/the-effects-of-voice-system-design-components-on-driver-workload-uTeuSEyiyb

References (17)

Publisher
SAGE
Copyright
© National Academy of Sciences: Transportation Research Board 2018
ISSN
0361-1981
eISSN
2169-4052
DOI
10.1177/0361198118777382
Publisher site
See Article on Publisher Site

Abstract

In-vehicle voice control systems are standard in most new vehicles. However, despite auditory-vocal interaction allowing drivers to keep their hands on the steering wheel and eyes on the forward roadway, recent findings indicate the potential for these systems to increase levels of workload and lead to lengthy interaction times. Although many studies have examined the distraction potential of interacting with in-vehicle voice control systems, more research is needed to understand the relationship between different system design components and workload. In this study, we investigate the role of system delay, system accuracy, and menu depth in determining the overall level of demand and interaction times on eight different 2017 model-year vehicles. Voice system accuracy was measured via playback of a pre-recorded sample of voice commands through a studio monitor mounted near the headrest. Menu depth and system delay were calculated by measuring, respectively, the number of interaction steps and total system processing time required to access common infotainment functions. These measures were validated through linear and multiple regression analyses with workload and task time collected in an on-road study. We found system delay and system accuracy to be significant predictors of task time and subjective measures of workload from the NASA Task Load Index and the Driving Activity Load Index. A In addition to providing valuable information on the role of separate voice control system design components on resulting levels of workload, these results extend past research by generalizing findings to multiple current auditory-vocal systems.

Journal

Transportation Research RecordSAGE

Published: Dec 1, 2018

There are no references for this article.