Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synthesis and Anti-HIV Activity of Prodrugs Derived from Saquinavir and Indinavir:

Synthesis and Anti-HIV Activity of Prodrugs Derived from Saquinavir and Indinavir: With a view to improving the pharmacological properties, safety and pharmacokinetic profiles of current protease inhibitors, the synthesis of various acyl-substituted saquinavir and indinavir prodrugs, their in vitro stability with respect to hydrolysis and their anti-HIV (LAI and HTLV IIIB) activity and cytotoxicity in CEM-SS and MT4 cells have been investigated. Hydrolysis of the ester bond and liberation of the active free drug was found to be crucial for HIV inhibition: the faster the hydrolysis, the closer the anti-HIV activity was to that of the respective parent drug. This is the case for most of the C-14-substituted indinavir and saquinavir derivatives (IC50 from 10 to 360 nM for ester half-lives of 90 min to 40 h). Concomitantly, the level of HIV inhibition is very low for the prodrugs for which hydrolysis is very slow. This is the case with the myristoyl or oleyl saquinavir esters, owing to the stable masking of the hydroxyl that is part of the peptidomimetic non-cleavable transition state isostere responsible for the inhibitory potency of saquinavir (and indinavir). In contrast, the anti-HIV activity of the monosubstituted C-8 indinavir prodrugs seems not to be correlated with their resistance to hydrolysis, as expected (the C-8 hydroxyl of indinavir is not involved in the transition state isostere). No cytotoxicity was detected for the indinavir and saquinavir prodrugs for concentrations as high as 10 or even 100 μM, thus indicating promising therapeutic potential. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Antiviral Chemistry and Chemotherapy SAGE

Synthesis and Anti-HIV Activity of Prodrugs Derived from Saquinavir and Indinavir:

Loading next page...
 
/lp/sage/synthesis-and-anti-hiv-activity-of-prodrugs-derived-from-saquinavir-TzN9JSvm2Q
Publisher
SAGE
Copyright
Copyright © 2019 by SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
ISSN
2040-2066
eISSN
2040-2066
DOI
10.1177/095632020001100202
Publisher site
See Article on Publisher Site

Abstract

With a view to improving the pharmacological properties, safety and pharmacokinetic profiles of current protease inhibitors, the synthesis of various acyl-substituted saquinavir and indinavir prodrugs, their in vitro stability with respect to hydrolysis and their anti-HIV (LAI and HTLV IIIB) activity and cytotoxicity in CEM-SS and MT4 cells have been investigated. Hydrolysis of the ester bond and liberation of the active free drug was found to be crucial for HIV inhibition: the faster the hydrolysis, the closer the anti-HIV activity was to that of the respective parent drug. This is the case for most of the C-14-substituted indinavir and saquinavir derivatives (IC50 from 10 to 360 nM for ester half-lives of 90 min to 40 h). Concomitantly, the level of HIV inhibition is very low for the prodrugs for which hydrolysis is very slow. This is the case with the myristoyl or oleyl saquinavir esters, owing to the stable masking of the hydroxyl that is part of the peptidomimetic non-cleavable transition state isostere responsible for the inhibitory potency of saquinavir (and indinavir). In contrast, the anti-HIV activity of the monosubstituted C-8 indinavir prodrugs seems not to be correlated with their resistance to hydrolysis, as expected (the C-8 hydroxyl of indinavir is not involved in the transition state isostere). No cytotoxicity was detected for the indinavir and saquinavir prodrugs for concentrations as high as 10 or even 100 μM, thus indicating promising therapeutic potential.

Journal

Antiviral Chemistry and ChemotherapySAGE

Published: Jun 23, 2016

Keywords: HIV,protease inhibitors,prodrugs,indinavir,saquinavir

There are no references for this article.