Statistical Power in Longitudinal Network Studies

Statistical Power in Longitudinal Network Studies Longitudinal social network studies can easily suffer from insufficient statistical power. Studies that simultaneously investigate change of network ties and change of nodal attributes (selection and influence studies) are particularly at risk because the number of nodal observations is typically much lower than the number of observed tie variables. This article presents a simulation-based procedure to evaluate statistical power of longitudinal social network studies in which stochastic actor-oriented models are to be applied. Two detailed case studies illustrate how statistical power is strongly affected by network size, number of data collection waves, effect sizes, missing data, and participant turnover. These issues should thus be explored in the design phase of longitudinal social network studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sociological Methods & Research SAGE

Statistical Power in Longitudinal Network Studies

Loading next page...
 
/lp/sage/statistical-power-in-longitudinal-network-studies-QgqTennZ5z
Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
0049-1241
eISSN
1552-8294
D.O.I.
10.1177/0049124118769113
Publisher site
See Article on Publisher Site

Abstract

Longitudinal social network studies can easily suffer from insufficient statistical power. Studies that simultaneously investigate change of network ties and change of nodal attributes (selection and influence studies) are particularly at risk because the number of nodal observations is typically much lower than the number of observed tie variables. This article presents a simulation-based procedure to evaluate statistical power of longitudinal social network studies in which stochastic actor-oriented models are to be applied. Two detailed case studies illustrate how statistical power is strongly affected by network size, number of data collection waves, effect sizes, missing data, and participant turnover. These issues should thus be explored in the design phase of longitudinal social network studies.

Journal

Sociological Methods & ResearchSAGE

Published: Jan 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off