Sources of Error in IRT Trait Estimation

Sources of Error in IRT Trait Estimation In item response theory (IRT), item response probabilities are a function of item characteristics and latent trait scores. Within an IRT framework, trait score misestimation results from (a) random error, (b) the trait score estimation method, (c) errors in item parameter estimation, and (d) model misspecification. This study investigated the relative effects of these error sources on the bias and confidence interval coverage rates for trait scores. Our results showed that overall, bias values were close to 0, and coverage rates were fairly accurate for central trait scores and trait estimation methods that did not use a strong Bayesian prior. However, certain types of model misspecifications were found to produce severely biased trait estimates with poor coverage rates, especially at extremes of the latent trait continuum. It is demonstrated that biased trait estimates result from estimated item response functions (IRFs) that exhibit systematic conditional bias, and that these conditionally biased IRFs may not be detected by model or item fit indices. One consequence of these results is that certain types of model misspecifications can lead to estimated trait scores that are nonlinearly related to the data-generating latent trait. Implications for item and trait score estimation and interpretation are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Psychological Measurement SAGE

Sources of Error in IRT Trait Estimation

Loading next page...
 
/lp/sage/sources-of-error-in-irt-trait-estimation-tFc2eym7B5
Publisher
SAGE
Copyright
© The Author(s) 2017
ISSN
0146-6216
eISSN
1552-3497
D.O.I.
10.1177/0146621617733955
Publisher site
See Article on Publisher Site

Abstract

In item response theory (IRT), item response probabilities are a function of item characteristics and latent trait scores. Within an IRT framework, trait score misestimation results from (a) random error, (b) the trait score estimation method, (c) errors in item parameter estimation, and (d) model misspecification. This study investigated the relative effects of these error sources on the bias and confidence interval coverage rates for trait scores. Our results showed that overall, bias values were close to 0, and coverage rates were fairly accurate for central trait scores and trait estimation methods that did not use a strong Bayesian prior. However, certain types of model misspecifications were found to produce severely biased trait estimates with poor coverage rates, especially at extremes of the latent trait continuum. It is demonstrated that biased trait estimates result from estimated item response functions (IRFs) that exhibit systematic conditional bias, and that these conditionally biased IRFs may not be detected by model or item fit indices. One consequence of these results is that certain types of model misspecifications can lead to estimated trait scores that are nonlinearly related to the data-generating latent trait. Implications for item and trait score estimation and interpretation are discussed.

Journal

Applied Psychological MeasurementSAGE

Published: Jul 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off