Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Sources of Error in IRT Trait Estimation

Sources of Error in IRT Trait Estimation In item response theory (IRT), item response probabilities are a function of item characteristics and latent trait scores. Within an IRT framework, trait score misestimation results from (a) random error, (b) the trait score estimation method, (c) errors in item parameter estimation, and (d) model misspecification. This study investigated the relative effects of these error sources on the bias and confidence interval coverage rates for trait scores. Our results showed that overall, bias values were close to 0, and coverage rates were fairly accurate for central trait scores and trait estimation methods that did not use a strong Bayesian prior. However, certain types of model misspecifications were found to produce severely biased trait estimates with poor coverage rates, especially at extremes of the latent trait continuum. It is demonstrated that biased trait estimates result from estimated item response functions (IRFs) that exhibit systematic conditional bias, and that these conditionally biased IRFs may not be detected by model or item fit indices. One consequence of these results is that certain types of model misspecifications can lead to estimated trait scores that are nonlinearly related to the data-generating latent trait. Implications for item and trait score estimation and interpretation are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Psychological Measurement SAGE

Sources of Error in IRT Trait Estimation

Applied Psychological Measurement , Volume 42 (5): 17 – Jul 1, 2018

Loading next page...
 
/lp/sage/sources-of-error-in-irt-trait-estimation-tFc2eym7B5

References (49)

Publisher
SAGE
Copyright
© The Author(s) 2017
ISSN
0146-6216
eISSN
1552-3497
DOI
10.1177/0146621617733955
Publisher site
See Article on Publisher Site

Abstract

In item response theory (IRT), item response probabilities are a function of item characteristics and latent trait scores. Within an IRT framework, trait score misestimation results from (a) random error, (b) the trait score estimation method, (c) errors in item parameter estimation, and (d) model misspecification. This study investigated the relative effects of these error sources on the bias and confidence interval coverage rates for trait scores. Our results showed that overall, bias values were close to 0, and coverage rates were fairly accurate for central trait scores and trait estimation methods that did not use a strong Bayesian prior. However, certain types of model misspecifications were found to produce severely biased trait estimates with poor coverage rates, especially at extremes of the latent trait continuum. It is demonstrated that biased trait estimates result from estimated item response functions (IRFs) that exhibit systematic conditional bias, and that these conditionally biased IRFs may not be detected by model or item fit indices. One consequence of these results is that certain types of model misspecifications can lead to estimated trait scores that are nonlinearly related to the data-generating latent trait. Implications for item and trait score estimation and interpretation are discussed.

Journal

Applied Psychological MeasurementSAGE

Published: Jul 1, 2018

There are no references for this article.