Sizing and modelling of stand-alone photovoltaic water pumping system for irrigation

Sizing and modelling of stand-alone photovoltaic water pumping system for irrigation The aim of this study is to calculate the size of the stand-alone solar photovoltaic generator and water pumping system for irrigation. In addition solar photovoltaic generator connects voltage source inverter to vector controlled induction motor-pump system. Perturb and observe method is used for harvesting maximum power of photovoltaic generator. The smooth-starting of motor-pump drive is achieved through the maximum power point tracking method. The operational performance of the solar-water-pump system is kept at 60 m head and supply daily average 35,000 L/day. In this paper result is validated by the comparison fuzzy logic controller and proportional-integral controller, driven by solar-motor-pump system. The results confirmed that fuzzy logic controller based pumping system gives more accurate results as compared to proportional-integral controller based motor-pump system. The fuzzy logic controller increases the accuracy and efficiency of the solar-water-pump system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy & Environment SAGE

Sizing and modelling of stand-alone photovoltaic water pumping system for irrigation

Loading next page...
 
/lp/sage/sizing-and-modelling-of-stand-alone-photovoltaic-water-pumping-system-5AEDbyHPFH
Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
0958-305X
eISSN
2048-4070
D.O.I.
10.1177/0958305X17752739
Publisher site
See Article on Publisher Site

Abstract

The aim of this study is to calculate the size of the stand-alone solar photovoltaic generator and water pumping system for irrigation. In addition solar photovoltaic generator connects voltage source inverter to vector controlled induction motor-pump system. Perturb and observe method is used for harvesting maximum power of photovoltaic generator. The smooth-starting of motor-pump drive is achieved through the maximum power point tracking method. The operational performance of the solar-water-pump system is kept at 60 m head and supply daily average 35,000 L/day. In this paper result is validated by the comparison fuzzy logic controller and proportional-integral controller, driven by solar-motor-pump system. The results confirmed that fuzzy logic controller based pumping system gives more accurate results as compared to proportional-integral controller based motor-pump system. The fuzzy logic controller increases the accuracy and efficiency of the solar-water-pump system.

Journal

Energy & EnvironmentSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off