Access the full text.
Sign up today, get DeepDyve free for 14 days.
It is well known that shear stress at peak of reinforced concrete beams decreases with increasing effective depth. Thus, several existing design codes and models have included various forms of formulas considering the size effect on shear strength of reinforced concrete beams; however, past experimental researches show that tension reinforcement ratio is also associated with the shear strength of reinforced concrete beams. To examine the effect of tension reinforcement ratio and effective depth on shear strength of reinforced concrete beams, this study has conducted experiments in which the effective depth (150, 300, 500, and 780 mm) and tension reinforcement ratio (1%, 2%, and 3%) are employed as variables. Besides, a formula for the shear strength considering both variables is proposed based on data samples collected from the present experiment and previous research. The proposed formula gives predictions comparable to the results of existing shear tests. Furthermore, rational predictions are made for effective depth of beams, compressive strength of concrete, shear span-to-depth ratio, and even tension reinforcement ratio exceeding 3%.
Advances in Structural Engineering – SAGE
Published: Apr 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.