Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper presents a self-organizing model to design effective traffic signaling strategies in order to reduce traffic congestion in urban areas. The proposed traffic signaling system is based on a pattern model of self-organization, i.e., digital infochemicals (DIs), which are analogous to chemical substances that convey information between interactive elements mediated via the environment. In the context of traffic systems, the DIs refer to information generated by vehicles and dissipated by the urban transportation infrastructure. Based on the exploratory analysis with one single intersection, we demonstrate that the DI-based strategy performs significantly better than both the fixed and trigger-based scheduling strategies in terms of queue length and waiting time under both fixed and dynamic traffic demands.
SIMULATION: Transactions of The Society for Modeling and Simulation International – SAGE
Published: Mar 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.