Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractGender-specific mortality surfaces are panels of time series of mortality rates that allow to examine the temporal evolution of male and female mortality across ages. The analysis of these surfaces is often complicated by time-varying effects that reflect the association of age and gender with mortality under unobserved time-varying conditions of the population under study. We propose a hidden Markov model as a simple tool to estimate time-varying effects in mortality surfaces. Under this model, age and gender effects depend on the evolution of an unobserved (hidden) Markov chain, which segments each time series of rates according to time-varying latent classes. We describe the details of an efficient EM algorithm for maximum likelihood estimation of the parameters and suggest a straightforward parametric bootstrap routine to compute standard errors. These methods are illustrated on cardiovascular and cancer mortality rates, observed in Italy during the period 1980–2014.
Statistical Modelling – SAGE
Published: Jun 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.