Access the full text.
Sign up today, get DeepDyve free for 14 days.
As drones and autonomous cars become more widespread, it is becoming increasingly important that robots can operate safely under realistic conditions. The noisy information fed into real systems means that robots must use estimates of the environment to plan navigation. Efficiently guaranteeing that the resulting motion plans are safe under these circumstances has proved difficult. We examine how to guarantee that a trajectory or policy has at most ϵ collision probability (ϵ-safe) with only imperfect observations of the environment. We examine the implications of various mathematical formalisms of safety and arrive at a mathematical notion of safety of a long-term execution, even when conditioned on observational information. We explore the idea of shadows that generalize the notion of a confidence set to estimated shapes and present a theorem that allows us to understand the relationship between shadows and their classical statistical equivalents such as confidence and credible sets. We present efficient algorithms that use shadows to prove that trajectories or policies are safe with much tighter bounds than in previous work. Notably, the complexity of the environment does not affect our method’s ability to evaluate whether a trajectory or policy is safe. We then use these safety-checking methods to design a safe variant of the rapidly exploring random tree (RRT) planning algorithm.
The International Journal of Robotics Research – SAGE
Published: Dec 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.