Phenylethynyl-terminated oligoimides based on bis(p-aminophenoxy)dimethyl silane

Phenylethynyl-terminated oligoimides based on bis(p-aminophenoxy)dimethyl silane A series of phenylethynyl-terminated oligoimides based on 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA), 2,2′-bis(trifluoromethyl)benzidine (TFDB), and bis(p-aminophenoxy)dimethyl silane (APDS) with different siloxane content and various calculated molecular weights were synthesized. The effect of siloxane structure on the processability of oligoimides and the thermal stability of cured polyimides (PIs) was investigated. The results indicated that the oligoimides have lower melt viscosity and broader processing window with the incorporation of flexible siloxane segment. The thermal stability of the cured PIs can be significantly enhanced by high-temperature postcuring due to the oxidative cross-linking of siloxane. The polyimide PI-s1-15 exhibited good balance between processability and thermal stability with the minimum melt viscosity of 0.4 Pa·s at 325°C and glass transition temperature as high as 470°C after postcuring at 450°C. The carbon fiber-reinforced composite T800/PI-s1-15 displayed excellent high-temperature performance, which gave the flexural strength and interlaminar shear strength of 703 and 33 MPa, respectively, when tested at the temperature as high as 450°C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png High Performance Polymers SAGE

Phenylethynyl-terminated oligoimides based on bis(p-aminophenoxy)dimethyl silane

Loading next page...
 
/lp/sage/phenylethynyl-terminated-oligoimides-based-on-bis-p-aminophenoxy-kT0sLLIBuf
Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
0954-0083
eISSN
1361-6412
D.O.I.
10.1177/0954008318780211
Publisher site
See Article on Publisher Site

Abstract

A series of phenylethynyl-terminated oligoimides based on 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA), 2,2′-bis(trifluoromethyl)benzidine (TFDB), and bis(p-aminophenoxy)dimethyl silane (APDS) with different siloxane content and various calculated molecular weights were synthesized. The effect of siloxane structure on the processability of oligoimides and the thermal stability of cured polyimides (PIs) was investigated. The results indicated that the oligoimides have lower melt viscosity and broader processing window with the incorporation of flexible siloxane segment. The thermal stability of the cured PIs can be significantly enhanced by high-temperature postcuring due to the oxidative cross-linking of siloxane. The polyimide PI-s1-15 exhibited good balance between processability and thermal stability with the minimum melt viscosity of 0.4 Pa·s at 325°C and glass transition temperature as high as 470°C after postcuring at 450°C. The carbon fiber-reinforced composite T800/PI-s1-15 displayed excellent high-temperature performance, which gave the flexural strength and interlaminar shear strength of 703 and 33 MPa, respectively, when tested at the temperature as high as 450°C.

Journal

High Performance PolymersSAGE

Published: Jan 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off