Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this article, a novel data-driven sliding mode controller for a single-input single-output nonlinear system is designed from a new perspective. The proposed controller is model-free, that is, it is based on just input and output data. Therefore, it is suitable for systems with unknown models. The approach to design the controller is based on an optimization procedure. First, a linear regression estimation is assumed to exist for the system behavior. Then an optimal controller is designed for this estimated model. The cost function is proposed in a way that minimization of it, could guarantee that the sliding function and its first derivative converge to zero. Based on rigorous theoretical analysis, boundedness of the tracking error is then proved. Uncertainty is then considered and the control law is modified to cope with it. To demonstrate the validity and the performance of the proposed method in different situations, different computer simulations and experimental tests have been provided. Results show the effectiveness of the proposed method for different systems in different situations.
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering – SAGE
Published: Nov 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.