Model-free sliding mode control, theory and application

Model-free sliding mode control, theory and application In this article, a novel data-driven sliding mode controller for a single-input single-output nonlinear system is designed from a new perspective. The proposed controller is model-free, that is, it is based on just input and output data. Therefore, it is suitable for systems with unknown models. The approach to design the controller is based on an optimization procedure. First, a linear regression estimation is assumed to exist for the system behavior. Then an optimal controller is designed for this estimated model. The cost function is proposed in a way that minimization of it, could guarantee that the sliding function and its first derivative converge to zero. Based on rigorous theoretical analysis, boundedness of the tracking error is then proved. Uncertainty is then considered and the control law is modified to cope with it. To demonstrate the validity and the performance of the proposed method in different situations, different computer simulations and experimental tests have been provided. Results show the effectiveness of the proposed method for different systems in different situations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering SAGE

Loading next page...
 
/lp/sage/model-free-sliding-mode-control-theory-and-application-3Ae07Y2ymH
Publisher
SAGE Publications
Copyright
© IMechE 2018
ISSN
0959-6518
eISSN
2041-3041
D.O.I.
10.1177/0959651818780597
Publisher site
See Article on Publisher Site

Abstract

In this article, a novel data-driven sliding mode controller for a single-input single-output nonlinear system is designed from a new perspective. The proposed controller is model-free, that is, it is based on just input and output data. Therefore, it is suitable for systems with unknown models. The approach to design the controller is based on an optimization procedure. First, a linear regression estimation is assumed to exist for the system behavior. Then an optimal controller is designed for this estimated model. The cost function is proposed in a way that minimization of it, could guarantee that the sliding function and its first derivative converge to zero. Based on rigorous theoretical analysis, boundedness of the tracking error is then proved. Uncertainty is then considered and the control law is modified to cope with it. To demonstrate the validity and the performance of the proposed method in different situations, different computer simulations and experimental tests have been provided. Results show the effectiveness of the proposed method for different systems in different situations.

Journal

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control EngineeringSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off