Insights into temperature effects on structural deformation of a cable-stayed bridge based on structural health monitoring

Insights into temperature effects on structural deformation of a cable-stayed bridge based on... Structural deformation is an important consideration in the health monitoring of bridges, and its dependence on temperature variations is quite complex. Based on field measurements performed for an operational cable-stayed bridge, the proposed study investigates mechanisms of thermally induced variations in girder length and mid-span deflection through plane geometric and finite element analyses. The objective of this study is to understand the behaviour of such bridges over annual and diurnal cycles. It has been observed that the girder length and mid-span deflection of a cable-stayed bridge exhibit different modes of the temperature–response correlation. Thermally induced changes in girder length are solely governed by the average girder temperature, and its annual variation in amplitude is significantly larger compared to the diurnal variation. However, thermally induced mid-span deflections are simultaneously influenced by the cable temperature and average girder temperature, and these do not vary monotonously with temperature, thereby resulting in nearly equal variation amplitudes over both annual and diurnal cycles. Temperature-induced deformations of a cable-stayed bridge could well be approximated through multiple linear superposition of thermal-expansion effects of individual components. Besides thermal-expansion coefficients of structural materials, the temperature dependency of mid-span deflection of a symmetrical twin-tower cable-stayed bridge is closely related to the ratio of tower height above the deck to central span of the girder as well as span ratio of the side span to central span. The proposed simplified formulae to estimate the sensitivities of temperature effects could be readily extended to other cable-stayed bridges with different geometric arrangements, thereby providing valuable insights into thermally induced deformation of such bridges. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural Health Monitoring: An International Journal SAGE

Insights into temperature effects on structural deformation of a cable-stayed bridge based on structural health monitoring

Loading next page...
 
/lp/sage/insights-into-temperature-effects-on-structural-deformation-of-a-cable-hHCYpvzmY7
Publisher
SAGE Publications
Copyright
© The Author(s) 2018
ISSN
1475-9217
eISSN
1741-3168
D.O.I.
10.1177/1475921718773954
Publisher site
See Article on Publisher Site

Abstract

Structural deformation is an important consideration in the health monitoring of bridges, and its dependence on temperature variations is quite complex. Based on field measurements performed for an operational cable-stayed bridge, the proposed study investigates mechanisms of thermally induced variations in girder length and mid-span deflection through plane geometric and finite element analyses. The objective of this study is to understand the behaviour of such bridges over annual and diurnal cycles. It has been observed that the girder length and mid-span deflection of a cable-stayed bridge exhibit different modes of the temperature–response correlation. Thermally induced changes in girder length are solely governed by the average girder temperature, and its annual variation in amplitude is significantly larger compared to the diurnal variation. However, thermally induced mid-span deflections are simultaneously influenced by the cable temperature and average girder temperature, and these do not vary monotonously with temperature, thereby resulting in nearly equal variation amplitudes over both annual and diurnal cycles. Temperature-induced deformations of a cable-stayed bridge could well be approximated through multiple linear superposition of thermal-expansion effects of individual components. Besides thermal-expansion coefficients of structural materials, the temperature dependency of mid-span deflection of a symmetrical twin-tower cable-stayed bridge is closely related to the ratio of tower height above the deck to central span of the girder as well as span ratio of the side span to central span. The proposed simplified formulae to estimate the sensitivities of temperature effects could be readily extended to other cable-stayed bridges with different geometric arrangements, thereby providing valuable insights into thermally induced deformation of such bridges.

Journal

Structural Health Monitoring: An International JournalSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off