Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Inhibitors of Measles Virus:

Inhibitors of Measles Virus: Measles virus (MV) infections have been almost eradicated in some industrialized nations. However, MV continues to cause severe disease and mortality in the world and is responsible for clusters of exogenous-borne disease in essentially disease-free countries. Because of the ebb and flow of immunization campaigns, especially in the poverty-stricken and war-torn Third World, and the ominous potential for severe disease and mortality, it is vital that research for discovery of therapeutic countermeasures should continue. To that end, a number of compounds have been evaluated for efficacy in vitro and in animal models, and several therapeutic modalities have been tested in the clinic. The only current therapies used in the clinic include ribavirin administered orally or intravenously, alone or in combination with immune serum globulin; these therapies have demonstrated variable efficacy. Therefore, drug discovery efforts have been launched to supplement the existing treatments for MV infections. Antisense molecules, adenosine and guanosine nucleosides, including ring-expanded ‘fat’ nucleoside analogues, brassinosteroids, coumarins, peptide inhibitors, modulators of cholesterol synthesis and a variety of natural products have been screened for efficacy and toxicity both in vitro and in animals. However, none of these agents has gone into human clinical trials and most will not merit further development due to toxicity concerns and/or low potency. Thus, further research is needed to develop more potent and less toxic drugs that could be used for treating MV infections to supplement the existing MV vaccine campaigns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Antiviral Chemistry and Chemotherapy SAGE

Inhibitors of Measles Virus:

Antiviral Chemistry and Chemotherapy , Volume 15 (3): 9 – Jun 23, 2016

Loading next page...
 
/lp/sage/inhibitors-of-measles-virus-aKNpHkfqh2
Publisher
SAGE
Copyright
Copyright © 2019 by SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
ISSN
2040-2066
eISSN
2040-2066
DOI
10.1177/095632020401500301
Publisher site
See Article on Publisher Site

Abstract

Measles virus (MV) infections have been almost eradicated in some industrialized nations. However, MV continues to cause severe disease and mortality in the world and is responsible for clusters of exogenous-borne disease in essentially disease-free countries. Because of the ebb and flow of immunization campaigns, especially in the poverty-stricken and war-torn Third World, and the ominous potential for severe disease and mortality, it is vital that research for discovery of therapeutic countermeasures should continue. To that end, a number of compounds have been evaluated for efficacy in vitro and in animal models, and several therapeutic modalities have been tested in the clinic. The only current therapies used in the clinic include ribavirin administered orally or intravenously, alone or in combination with immune serum globulin; these therapies have demonstrated variable efficacy. Therefore, drug discovery efforts have been launched to supplement the existing treatments for MV infections. Antisense molecules, adenosine and guanosine nucleosides, including ring-expanded ‘fat’ nucleoside analogues, brassinosteroids, coumarins, peptide inhibitors, modulators of cholesterol synthesis and a variety of natural products have been screened for efficacy and toxicity both in vitro and in animals. However, none of these agents has gone into human clinical trials and most will not merit further development due to toxicity concerns and/or low potency. Thus, further research is needed to develop more potent and less toxic drugs that could be used for treating MV infections to supplement the existing MV vaccine campaigns.

Journal

Antiviral Chemistry and ChemotherapySAGE

Published: Jun 23, 2016

Keywords: measles virus,antiviral,vaccine,inhibitors

There are no references for this article.