High thermodynamic stability study of PLA/LCNF composite

High thermodynamic stability study of PLA/LCNF composite Thermal degradation behaviors of one composite constituted by poly(lactic acid) (PLA), cellulose nanofibrils (CNF), and lignin–cellulose nanofibrils (LCNF) in a nitrogen atmosphere were studied using thermogravimetric analysis (TGA). It was found that the thermal degradation stability of the PLA/LCNF composite was improved when compared to PLA and PLA/CNF. The Flynn–Wall–Ozawa method was used to determine the apparent activation energy of the composite samples which was based on a set of TGA data obtained at different heating rates. It was shown that the conversion functions calculated by means of the Coats–Redfern method depend on a set of kinetic models, which could be concluded that using the model-fitting methods couldn’t reveal the complexity of the thermal degradation process and the isokinetic relationship method was used to estimate a model-independent pre-exponential factor (ln A) corresponding to a given degree of conversion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Thermoplastic Composite Materials SAGE

High thermodynamic stability study of PLA/LCNF composite

Loading next page...
 
/lp/sage/high-thermodynamic-stability-study-of-pla-lcnf-composite-8MKwoigaR0
Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
0892-7057
eISSN
1530-7980
D.O.I.
10.1177/0892705718779120
Publisher site
See Article on Publisher Site

Abstract

Thermal degradation behaviors of one composite constituted by poly(lactic acid) (PLA), cellulose nanofibrils (CNF), and lignin–cellulose nanofibrils (LCNF) in a nitrogen atmosphere were studied using thermogravimetric analysis (TGA). It was found that the thermal degradation stability of the PLA/LCNF composite was improved when compared to PLA and PLA/CNF. The Flynn–Wall–Ozawa method was used to determine the apparent activation energy of the composite samples which was based on a set of TGA data obtained at different heating rates. It was shown that the conversion functions calculated by means of the Coats–Redfern method depend on a set of kinetic models, which could be concluded that using the model-fitting methods couldn’t reveal the complexity of the thermal degradation process and the isokinetic relationship method was used to estimate a model-independent pre-exponential factor (ln A) corresponding to a given degree of conversion.

Journal

Journal of Thermoplastic Composite MaterialsSAGE

Published: Jan 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off