Access the full text.
Sign up today, get DeepDyve free for 14 days.
Tools abrasive wear due to sand particles has caused severe damage during oil and gas exploitation. The friction and wear behaviors of single quartz sand particle against N80 casing steel were investigated to estimate the particle transport resistance and particle abrasive wear behavior using a homemade tribometer in wellbore sand cleanout. Various measurements were conducted to research the impact factor of particle under different water processing condition, dry, short immersion, wet, influences of load and slide velocity. Experimental results indicated that particle-casing friction resistance is mainly formed due to plowing and adhesion effect. Casing transfer and plowing removal are two main damage forms. Particle real contact area increases noticeably after water absorption, which decreases the hertz contact stress and finally produces less plowing depth of casing steel and causes less damage. With load increasing, friction resistance and wear increase with addition of plowing depth. A simple particle-casing friction model was established considering the experimental contact behavior.
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology – SAGE
Published: Mar 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.