Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Field investigation of wind–rain induced pressure on a low-rise building during Typhoon Haikui

Field investigation of wind–rain induced pressure on a low-rise building during Typhoon Haikui Due to the strike of wind-blown raindrops, the pressure caused by wind and rain on building facades is different from the action of wind-only. The wind–rain induced pressure during Typhoon Haikui (2012) was collected at three taps on the windward side of Tongji University experimental building which was located near the coast of East China Sea. The observed data during the storm was compared with both the data of normal wind events without rains and wind tunnel test. The results show that the presence of driving rains intensifies the wind effects acting on the windward side of the building. More specifically, the mean wind–rain induced pressure coefficients at the three locations of the experimental building are larger than those collected from the strong wind-only events and the wind tunnel test when the wind direction ranges from 110° to 130°. It was also found that the mean wind–rain induced pressure coefficients at each tap increase in magnitude with rainfall intensity and the distance between the pressure tap and the wall corner. Similarly, the fluctuating wind–rain induced pressure coefficients are larger in comparison to the wind-only pressure coefficients from the full-scale measurement and wind tunnel test. However, the coefficients decrease with the distance from the wall corner in the case of 80°–140° wind directions. In addition, it was found that Gamma distribution is a robust model to represent the probability distribution of the wind–rain induced pressure coefficients. High quality of pressure correlation was observed among three taps, regardless of the rainfall intensity. By contrast, the presence of driving rains slightly reduces the correlation of wind–rain induced pressure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Field investigation of wind–rain induced pressure on a low-rise building during Typhoon Haikui

Loading next page...
 
/lp/sage/field-investigation-of-wind-rain-induced-pressure-on-a-low-rise-WPQxUCp19K
Publisher
SAGE
Copyright
© The Author(s) 2020
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433220930322
Publisher site
See Article on Publisher Site

Abstract

Due to the strike of wind-blown raindrops, the pressure caused by wind and rain on building facades is different from the action of wind-only. The wind–rain induced pressure during Typhoon Haikui (2012) was collected at three taps on the windward side of Tongji University experimental building which was located near the coast of East China Sea. The observed data during the storm was compared with both the data of normal wind events without rains and wind tunnel test. The results show that the presence of driving rains intensifies the wind effects acting on the windward side of the building. More specifically, the mean wind–rain induced pressure coefficients at the three locations of the experimental building are larger than those collected from the strong wind-only events and the wind tunnel test when the wind direction ranges from 110° to 130°. It was also found that the mean wind–rain induced pressure coefficients at each tap increase in magnitude with rainfall intensity and the distance between the pressure tap and the wall corner. Similarly, the fluctuating wind–rain induced pressure coefficients are larger in comparison to the wind-only pressure coefficients from the full-scale measurement and wind tunnel test. However, the coefficients decrease with the distance from the wall corner in the case of 80°–140° wind directions. In addition, it was found that Gamma distribution is a robust model to represent the probability distribution of the wind–rain induced pressure coefficients. High quality of pressure correlation was observed among three taps, regardless of the rainfall intensity. By contrast, the presence of driving rains slightly reduces the correlation of wind–rain induced pressure.

Journal

Advances in Structural EngineeringSAGE

Published: Nov 1, 2020

There are no references for this article.