Explanatory Cognitive Diagnostic Models: Incorporating Latent and Observed Predictors

Explanatory Cognitive Diagnostic Models: Incorporating Latent and Observed Predictors Large-scale educational testing data often contain vast amounts of variables associated with information pertaining to test takers, schools, or access to educational resources—information that can help explain relationships between test taker performance and their learning environment. This study examines approaches to incorporate latent and observed explanatory variables as predictors for cognitive diagnostic models (CDMs). Methods to specify and simultaneously estimate observed and latent variables (estimated using item response theory) as predictors affecting attribute mastery were examined. Real-world data analyses were conducted to demonstrate the application using large-scale international testing data. Simulation studies were conducted to examine the recovery and classification for simultaneously estimating multiple latent (using dichotomous and polytomous items as indicators for the latent construct) and observed predictors for varying sample sizes and number of attributes. Results showed stable parameter recovery and consistency in attribute classification. Implications for latent predictors and attribute specifications are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Psychological Measurement SAGE

Explanatory Cognitive Diagnostic Models: Incorporating Latent and Observed Predictors

Loading next page...
 
/lp/sage/explanatory-cognitive-diagnostic-models-incorporating-latent-and-tpP9M9D18w
Publisher
SAGE Publications
Copyright
© The Author(s) 2017
ISSN
0146-6216
eISSN
1552-3497
D.O.I.
10.1177/0146621617738012
Publisher site
See Article on Publisher Site

Abstract

Large-scale educational testing data often contain vast amounts of variables associated with information pertaining to test takers, schools, or access to educational resources—information that can help explain relationships between test taker performance and their learning environment. This study examines approaches to incorporate latent and observed explanatory variables as predictors for cognitive diagnostic models (CDMs). Methods to specify and simultaneously estimate observed and latent variables (estimated using item response theory) as predictors affecting attribute mastery were examined. Real-world data analyses were conducted to demonstrate the application using large-scale international testing data. Simulation studies were conducted to examine the recovery and classification for simultaneously estimating multiple latent (using dichotomous and polytomous items as indicators for the latent construct) and observed predictors for varying sample sizes and number of attributes. Results showed stable parameter recovery and consistency in attribute classification. Implications for latent predictors and attribute specifications are discussed.

Journal

Applied Psychological MeasurementSAGE

Published: Jul 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off