Access the full text.
Sign up today, get DeepDyve free for 14 days.
Structural units are the basic components of self-locking foldable grid structures, and their spatial configurations have a vital influence on the structural performance of the overall grid. Research on the deployment process of structural units can help effectively control their stress level and achieve a rational self-locking capability for the units. Therefore, this article describes experimental and modeling studies on the deployment process of structural units and provides a reference for the establishment of numerical models and the design of structural units. The experimental results revealed that the self-locking capability of a structural unit is mainly determined by the bending moments of its members in the planes of the scissor-like elements. The method for adjusting the locations of the pivot endpoints at the radial bars is effective for improving the self-locking capacity, but the degree of adjustment must be strictly controlled to prevent large rotation at the inner lower hub joint. In addition, the feasibility of the modeling method was verified by comparing the experimental curves with the curves obtained by theoretical models.
Advances in Structural Engineering – SAGE
Published: Dec 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.