Experimental and numerical investigation of novel Savonius wind turbine

Experimental and numerical investigation of novel Savonius wind turbine Savonius wind turbines have distinct advantages in terms of simplicity, low noise, and ease of manufacturing, yet they are not preferred for large-scale power generation due to their lower aerodynamic performance and high wind loads. This study is aimed at reducing the thrust load with retractable type telescopic blades. This novel telescopic Savonius turbine is tested in an open jet wind tunnel to assess the performance in terms of torque, power, and thrust on the rotor. The dynamic and static characteristics are obtained for both extended and retracted configuration after correcting the experimental data for wind tunnel blockage. A preliminary numerical study is carried out in an effort to determine the variation of the drag coefficient in relation to the bucket thickness. The proposed telescopic turbine demonstrates a reduction in thrust load of 72.4% with a maximum power coefficient of 0.14 at the tip speed ratio of 0.7 compared to an extended operating configuration, similar to a conventional Savonius turbine. Thus, the telescopic Savonius turbine can be scaled up to higher kilowatt capacity with the cost comparable to other high-speed rotors such as Darrieus or horizontal axis wind turbines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wind Engineering SAGE

Experimental and numerical investigation of novel Savonius wind turbine

Loading next page...
 
/lp/sage/experimental-and-numerical-investigation-of-novel-savonius-wind-6vYwUcSt0V
Publisher
SAGE Publications
Copyright
© The Author(s) 2018
ISSN
0309-524X
eISSN
2048-402X
D.O.I.
10.1177/0309524X18780392
Publisher site
See Article on Publisher Site

Abstract

Savonius wind turbines have distinct advantages in terms of simplicity, low noise, and ease of manufacturing, yet they are not preferred for large-scale power generation due to their lower aerodynamic performance and high wind loads. This study is aimed at reducing the thrust load with retractable type telescopic blades. This novel telescopic Savonius turbine is tested in an open jet wind tunnel to assess the performance in terms of torque, power, and thrust on the rotor. The dynamic and static characteristics are obtained for both extended and retracted configuration after correcting the experimental data for wind tunnel blockage. A preliminary numerical study is carried out in an effort to determine the variation of the drag coefficient in relation to the bucket thickness. The proposed telescopic turbine demonstrates a reduction in thrust load of 72.4% with a maximum power coefficient of 0.14 at the tip speed ratio of 0.7 compared to an extended operating configuration, similar to a conventional Savonius turbine. Thus, the telescopic Savonius turbine can be scaled up to higher kilowatt capacity with the cost comparable to other high-speed rotors such as Darrieus or horizontal axis wind turbines.

Journal

Wind EngineeringSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off