Access the full text.
Sign up today, get DeepDyve free for 14 days.
The experimental dynamical response of three types of nonlinear hysteretic systems is identified employing phenomenological models togheter with the Differential Evolutionary algorithm. The mass–spring–damper system is characterized by hysteretic restoring forces provided by assemblies of shape memory and steel wire ropes subject to flexure or coupled states of tension and flexure. The energy dissipation due to phase transformations and inter-wire friction and the stretching-induced geometric nonlinearities give rise to different shapes of hysteresis cycles. The mechanical device subject to strong seismic excitations is investigated in its ultimate limit state whereby inelastic strains are induced in the steel wires together with a global nonsymmetric response of the system. The targeted dynamical characterization of the hysteretic oscillator up to its ultimate limit state has a special meaning when the device is employed in the field of vibration control. The dynamical response is identified exploiting the measurements of the oscillating mass relative displacement and inertia force that must be balanced, at each time instant, by the overall restoring forces provided by the mechanism. The restoring force is assumed to be the sum of different contributions such as a cubic nonsymmetric elastic force and a nonsymmetric hysteretic force modeled according to a modified version of the Bouc–Wen model. The parameters are identified minimizing the difference between the numerical and the experimental restoring force histories. High levels of accuracy are achieved in the identification with mean square errors lower than 2%.
Journal of Intelligent Material Systems and Structures – SAGE
Published: Aug 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.