Development of acoustic target strength near-field equation for underwater vehicles

Development of acoustic target strength near-field equation for underwater vehicles For modern weapon systems, the most important factor in survivability is detection capability. Acoustic target strength is a major parameter of the active sonar equation. The traditional target strength equation used to predict the re-radiated intensity for the far field is derived with a plane-wave assumption. In this study, a near-field target strength equation was derived without a plane-wave assumption for a polygonal plate. The target strength equation for polygonal plates, which is applicable to the near field, is provided by the Helmholtz–Kirchhoff formula that is used as the primary equation for solving the re-radiated pressure field. A generalized definition of the sonar cross section is suggested that is applicable to the near field. In comparison experiments for a cylinder, the target strength equation for polygonal plates in near field was executed to verify the validity and accuracy of the analysis. In addition, an underwater vehicle model was analyzed with the developed near-field equation to confirm various parameter effects such as distance and frequency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment SAGE

Loading next page...
 
/lp/sage/development-of-acoustic-target-strength-near-field-equation-for-acyOPXfAN1
Publisher
SAGE Publications
Copyright
© IMechE 2018
ISSN
1475-0902
eISSN
2041-3084
D.O.I.
10.1177/1475090218779292
Publisher site
See Article on Publisher Site

Abstract

For modern weapon systems, the most important factor in survivability is detection capability. Acoustic target strength is a major parameter of the active sonar equation. The traditional target strength equation used to predict the re-radiated intensity for the far field is derived with a plane-wave assumption. In this study, a near-field target strength equation was derived without a plane-wave assumption for a polygonal plate. The target strength equation for polygonal plates, which is applicable to the near field, is provided by the Helmholtz–Kirchhoff formula that is used as the primary equation for solving the re-radiated pressure field. A generalized definition of the sonar cross section is suggested that is applicable to the near field. In comparison experiments for a cylinder, the target strength equation for polygonal plates in near field was executed to verify the validity and accuracy of the analysis. In addition, an underwater vehicle model was analyzed with the developed near-field equation to confirm various parameter effects such as distance and frequency.

Journal

Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime EnvironmentSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off