Design and characterization of trabecular structures for an anti-icing sandwich panel produced by additive manufacturing

Design and characterization of trabecular structures for an anti-icing sandwich panel produced by... The need for a high-efficiency hot air anti-icing system is met by the use of sandwich panels with high surface area trabecular structures as core. Trabecular structures have good mechanical properties and are able to act as thermal exchange and structural support. A structural characterization of complex trabecular structures made by Additive Manufacturing is required. For this study, AlSi10Mg specimens were produced by Selective Laser Melting technology varying cell shapes (with or without vertical struts), cell sizes (4 and 5 mm) and struts size (1 and 1.2 mm). Compressive tests were performed on the specimens and fracture mechanisms for the two cell types were analyzed by optical microscope observation. The rupture modes of the specimens are strongly dependent on the cell shape as shown by the mechanical results and confirmed by comparison with the Gibson–Ashby model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sandwich Structures & Materials SAGE

Design and characterization of trabecular structures for an anti-icing sandwich panel produced by additive manufacturing

Loading next page...
 
/lp/sage/design-and-characterization-of-trabecular-structures-for-an-anti-icing-0XrGS4heBi
Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
1099-6362
eISSN
1530-7972
D.O.I.
10.1177/1099636218780513
Publisher site
See Article on Publisher Site

Abstract

The need for a high-efficiency hot air anti-icing system is met by the use of sandwich panels with high surface area trabecular structures as core. Trabecular structures have good mechanical properties and are able to act as thermal exchange and structural support. A structural characterization of complex trabecular structures made by Additive Manufacturing is required. For this study, AlSi10Mg specimens were produced by Selective Laser Melting technology varying cell shapes (with or without vertical struts), cell sizes (4 and 5 mm) and struts size (1 and 1.2 mm). Compressive tests were performed on the specimens and fracture mechanisms for the two cell types were analyzed by optical microscope observation. The rupture modes of the specimens are strongly dependent on the cell shape as shown by the mechanical results and confirmed by comparison with the Gibson–Ashby model.

Journal

Journal of Sandwich Structures & MaterialsSAGE

Published: Jan 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off