Access the full text.
Sign up today, get DeepDyve free for 14 days.
Since most of the XY positioning stages with large travel range proposed in previous studies suffer from low out-of-plane stiffness and loose structure, this paper presents a novel two degrees-of-freedom large travel linear compliant positioning stage with high out-of-plane stiffness and compact size. The linear guide compliant mechanism of the stage takes spatial leaf spring parallelograms as the basic units, which are serially connected to obtain large travel, high out-of-plane stiffness, and compact size simultaneously. The theoretical static stiffness and dynamic resonant frequency are obtained by matrix structural analysis. Finite element analysis is carried out to investigate the characteristics of the developed stage. The analytical model is confirmed by experiments. It is noted that the developed stage has a workspace of 4.4 × 7.0 mm2, and the area ratio of workspace to the outer dimension of the stage is 0.16%, which is greater than that of any existing stage reported in the literature. The results of out-of-plane payload tests indicate that the stage can sustain at least 20 kg out-of-plane payload without changing the travel range. And the positioning experiments show that the developed stage is capable of tracking a circle of radius 1.5 mm with 10 µm error and the resolution is less than 2 µm.
"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science" – SAGE
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.