“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Combined β-adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons

Shortly after stress, limbic neurons are exposed to high levels of noradrenaline and corticosterone. These hormones are necessary for optimal behavioural adaptation. Behavioural effects critically depend on noradrenaline acting via β-adrenergic receptors, but these effects are strongly modulated by corticosterone, indicating putative interactions between the two hormones. Since both noradrenaline and corticosterone are known to quickly affect properties of AMPA-type glutamate receptors (AMPAR), we here examined – in hippocampal neurons – three parameters which give insight in the functionality of AMPARs: phosphorylation, surface expression and spontaneous synaptic transmission. In homogenates of adult hippocampal slices, application of corticosterone (30 nM for 15 min) by itself did not affect phosphorylation of the AMPAR GluA1 subunit at S845 or S831. Co-application of the β-adrenergic receptor agonist isoproterenol (10 µM) largely increased S845 (but not S831) phosphorylation. Corticosterone also did not change GluA1 and GluA2 surface expression in hippocampal primary cultures. However, combined administration of corticosterone and 1 µM isoproterenol – which by itself was ineffective – enhanced surface expression. Interestingly, 10 µM isoproterenol alone enhanced GluA1 surface expression, but this was decreased by corticosterone. Finally, in hippocampal primary cultures, the inter-event interval of miniature excitatory postsynaptic currents (mEPSCs) was decreased by the combination of 1 µM isoproterenol and corticosterone (which were ineffective by themselves) while the same combination did not affect the amplitude. We conclude that AMPAR phosphorylation, surface expression and mEPSC inter-event interval respond most strongly to a combination of corticosterone and β-adrenergic receptors. These combined hormonal effects on glutamate transmission might contribute to their memory-enhancing effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Psychopharmacology SAGE

Combined β-adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons

Abstract

Shortly after stress, limbic neurons are exposed to high levels of noradrenaline and corticosterone. These hormones are necessary for optimal behavioural adaptation. Behavioural effects critically depend on noradrenaline acting via β-adrenergic receptors, but these effects are strongly modulated by corticosterone, indicating putative interactions between the two hormones. Since both noradrenaline and corticosterone are known to quickly affect properties of AMPA-type glutamate receptors (AMPAR), we here examined – in hippocampal neurons – three parameters which give insight in the functionality of AMPARs: phosphorylation, surface expression and spontaneous synaptic transmission. In homogenates of adult hippocampal slices, application of corticosterone (30 nM for 15 min) by itself did not affect phosphorylation of the AMPAR GluA1 subunit at S845 or S831. Co-application of the β-adrenergic receptor agonist isoproterenol (10 µM) largely increased S845 (but not S831) phosphorylation. Corticosterone also did not change GluA1 and GluA2 surface expression in hippocampal primary cultures. However, combined administration of corticosterone and 1 µM isoproterenol – which by itself was ineffective – enhanced surface expression. Interestingly, 10 µM isoproterenol alone enhanced GluA1 surface expression, but this was decreased by corticosterone. Finally, in hippocampal primary cultures, the inter-event interval of miniature excitatory postsynaptic currents (mEPSCs) was decreased by the combination of 1 µM isoproterenol and corticosterone (which were ineffective by themselves) while the same combination did not affect the amplitude. We conclude that AMPAR phosphorylation, surface expression and mEPSC inter-event interval respond most strongly to a combination of corticosterone and β-adrenergic receptors. These combined hormonal effects on glutamate transmission might contribute to their memory-enhancing effects.
Loading next page...
 
/lp/sage/combined-adrenergic-and-corticosteroid-receptor-activation-regulates-IIW46g4ZC8

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually