Bending behavior of single hat-shaped composite T-joints under out-of-plane loading for lightweight automobile structures

Bending behavior of single hat-shaped composite T-joints under out-of-plane loading for... This paper presents an analytical, numerical, and experimental study on the failure behavior of single hat-shaped T-joints made of plain woven carbon fiber polymer (T300/epoxy 618) and subjected to out-of-plane bending. The T-joint is manufactured by vacuum bag molding process at room temperature. An analytical model is developed to analyze the experimental results and to establish the associated failure criteria. Two failure modes: (a) laminate buckling and (b) laminate crushing are considered, and the theoretical relationships for predicting the failure load associated with each of the two modes were developed. The experimental data correlate closely with the analytically predicted behavior, including failure mode and bending stiffness. In particular, both laminate buckling and laminate crushing are observed during the experiment with laminate crushing being the final failure mode, which can be considered to be the most important failure mode of the fabricated T-joint. In addition, numerical simulations based on the finite element method and the Hashin damage criteria also accurately predict the flexural modulus, the peak load, and failure locations of the T-joint obtained in the test. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Reinforced Plastics and Composites SAGE

Bending behavior of single hat-shaped composite T-joints under out-of-plane loading for lightweight automobile structures

Loading next page...
 
/lp/sage/bending-behavior-of-single-hat-shaped-composite-t-joints-under-out-of-WuS4XwO70c
Publisher
SAGE
Copyright
© The Author(s) 2018
ISSN
0731-6844
eISSN
1530-7964
D.O.I.
10.1177/0731684418764608
Publisher site
See Article on Publisher Site

Abstract

This paper presents an analytical, numerical, and experimental study on the failure behavior of single hat-shaped T-joints made of plain woven carbon fiber polymer (T300/epoxy 618) and subjected to out-of-plane bending. The T-joint is manufactured by vacuum bag molding process at room temperature. An analytical model is developed to analyze the experimental results and to establish the associated failure criteria. Two failure modes: (a) laminate buckling and (b) laminate crushing are considered, and the theoretical relationships for predicting the failure load associated with each of the two modes were developed. The experimental data correlate closely with the analytically predicted behavior, including failure mode and bending stiffness. In particular, both laminate buckling and laminate crushing are observed during the experiment with laminate crushing being the final failure mode, which can be considered to be the most important failure mode of the fabricated T-joint. In addition, numerical simulations based on the finite element method and the Hashin damage criteria also accurately predict the flexural modulus, the peak load, and failure locations of the T-joint obtained in the test.

Journal

Journal of Reinforced Plastics and CompositesSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off